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Velocity field statistics in the inertial to dissipation range of three-dimensional homogeneous steady
turbulent flow are studied using a high-resolution DNS with uplte 1024 grid points. The range

of the Taylor microscale Reynolds number is between 38 and 460. Isotropy at the small scales of
motion is well satisfied from half the integral scdle) down to the Kolmogorov scalén). The
Kolmogorov constant is 1.640.04, which is close to experimentally determined values. The third
order moment of the longitudinal velocity difference scales as the separation disteaue its
coefficient is close to 4/5. A clear inertial range is observed for moments of the velocity difference
up to the tenth order, between21007 and L/2~3007, where\ is the Taylor microscale. The
scaling exponents are measured directly from the structure functions; the transverse scaling
exponents are smaller than the longitudinal exponents when the order is greater than four. The
crossover length of the longitudinal velocity structure function increases with the order and
approaches ¥ while that of the transverse function remains approximately constant @he
crossover length and importance of the Taylor microscale are discusse@00® American
Institute of Physics.[DOI: 10.1063/1.1448296

I. INTRODUCTION (LRA) is used'%!! These are fully systematic theories that do
not contain anyad hocparameters.

Kolmogorov studied the statistical laws of a velocity  Direct numerical simulationéDNS9 of turbulent flows
field for small scales of turbulent motion at high Reynoldsare now performed at higher Reynolds numbers, due to the
numbers:? Two hypotheses were introduced in his theoryrecent dramatic increase in computational power. In the early
(hereafter K41 for shoyt local isotropy and homogeneity 90's, the resolution of DNS reachdd=512 grid points
exists; and there is an inertial range in the energy spectrufith a Taylor microscale Reynolds numbeR, of
of the flow that is independent of viscosity and large-scale210~2401?2° Most high-resolution DNSs have been per-
properties at sufficiently high Reynolds numbers. The mostormed for steady turbulence conditions to achieve high Rey-
prominent conclusion of his theory is the presence of theolds numbers and obtain reliable statistics. Although results
Kolmogorov _spectrumE (k) =Ke”% > in the inertial \ere reported withR, greater than 200, an inertial range
range, wheree is the average rate of energy dissipation perspectrum was observed only for the lowest narrow wave
unit mass and is a universal constant. number band at which forcing was applied. The Kolmogorov

Since K41, there has been a considerable amount of etonstant was inferred to be about +5in Ref. 14 and 1.62
fort made to study the turbulent velocity field statistics in thej, Ref. 16, but these results are not convincing, due to the
inertial range, and the energy spectrum has been a centrglsyficient width of the scaling range, anisotropy of the flow
quantity of interest. The Kolmogorov spectrum and constanie|d, limited ensemble size, forcing techniques used, and
have been measured in field and laboratory experinients. numerical limitations of the simulations.

The exponent for the inertial range spectrum is now widely  |ntermittency has also attracted the interest of research-
accepted as-5/3, with a small correction to account for flow g5 Since Kolmogorov's intermittency theorghereafter
intermittency. The Kolmogorov constaft is between 1.5 kg2) 2 many theoretical and statistical models of intermit-
and 2. After studying the results of many experiments,tenCy have been develop&&?3 The scaling exponents of
Sreenivasan stated thitis 1.62-0.17 The spectral theory higher order structure functions for velocity differences in
of turbulence has also been used to predict the Kolmogoroy,e inertial range were studied intensively. Intermittency in-
constant. The value df is 1.77 when the Lz_igranglar; history creases with a decrease in the size of the scales of motion.
direct interaction approximatiofLHDIA) is used and  The small-scale statistics gradually deviate from a Gaussian
1.72 when the Lagrangian renormalized approximationyisiribution, and the scaling exponents differ from those pre-
dicted by K41.

dElectronic mail: gotoh@system.nitech.ac.jp Experiments at very high Reynolds numbers have been

1070-6631/2002/14(3)/1065/17/$19.00 1065 © 2002 American Institute of Physics

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1066 Phys. Fluids, Vol. 14, No. 3, March 2002 Gotoh, Fukayama, and Nakano

TABLE |. DNS parameters and statistical quantities of the rJ@ﬁdy is the period used for the time average.

R, N Kimax v Cs Forcing range  Taq, E € L \ (X 10°?) K

38 128 60 1.50% 1072 1.30 J3=<k= 12 22.6 1.99 1.19 0.891 0.501 4.10

54 256 121 7.00x 103 0.70 V3sk= 12 14.9 1.39 0.627 0.829 0.393 2.72

70 256 121 4.00x 1073 0.50 J3=<k=\12 49.7 1.16 0.457 0.785 0.318 1.93
125 513 241 1.35x 103 0.50 V3=<k=12 5.52 1.25 0.492 0.744 0.185 0.841
284 513 241 6.00x 104 0.50 1sk<\6 3.03 1.96 0.530 1.246 0.149 0.449 1.64
381 1024 483 2.80x 104 0.51 1<k=.6 421 1.74 0.499 1.139 0.0989 0.258 1.63
460 1024 483 2.00x 104 051 1sk<\6 2.14 1.79 0.506 1.150 0.0841 0.199 1.64

performed in the atmospheric boundary layer and in huge A DNS with a sufficiently large grid size provides a
wind tunnels, and the measured scaling exponents wergetter opportunity to examine the points raised above. It has
found to deviate from K41 scalimf?*#?>8*However, there the advantage that any physical quantity can be measured
have been arguments made about the lack of small-scale flodirectly without deforming the flow field. In the present
isotropy and homogeneity in these experiments, which mighstudy, a series of large scale DNSs have been performed at a
be affected by the large-scale sh&=° high resolution of up toN=1024 and R, =460""% The
For experiments at moderate Reynolds numbers undénertial range of the turbulence field has a considerable
relatively well-controlled laboratory conditions, the width of length, and useful velocity statistics can be extracted such as
the scaling range is usually not large enough to determine thihe Kolmogorov constant, the energy spectrum, velocity
scaling exponents precisely. Extended self-simila(E59 structure functions up to the tenth order, their scaling expo-
has been exploited to overcome this difficulty and applied taments, and probability density functions for velocity differ-
various turbulent flows in both experiments and DN%S!  ences. To the authors’ best knowledge, these are the first
The idea is to measure the scaling exponents of the structui2NS data in the inertial range; the data provide new insight
functions when they are plotted against the third order loninto the inertial and dissipation ranges.
gitudinal structure function, rather than to use the separation The main purposes of the present paper are to describe
distance. The width of the scaling range is longer than thathe statistics of the velocity field in an incompressible steady
obtained with the usual method at low to moderate Reynoldsurbulent flow obtained from the DNS, and to reexamine
numbers. The scaling exponents are anomalous, but do agreerrent knowledge of turbulence, developed since K41. The
with those obtained from high Reynolds number experimentpaper is organized as follows. The numerical aspects of the
up to a certain ordéf?8=3'However, there is no consensus present DNS are described in Sec. Il, and the energy spec-
as to why the structure functions give a longer inertial rangetrum is examined in Sec. Ill. The variation of single point
or what is missing from the flow statistics as a result. Also,quantities and probability density functio(BDF9 with the
there is no unique way to determine the scaling exponentReynolds number is discussed in Sec. IV. The isotropy of the
for the transverse and mixed velocity structure functions, besecond and third order moments of the velocity difference is
cause those higher order structure functions can be plottegikamined in Sec. V, and the energy budget is examined in
against other types of third order structure functions as welterms of the Kaman—Howarth—Kolmogorov equation in
as the third order longitudinal structure function. Sec. VI. The structure functions and scaling exponents are
There also have been arguments about whether the scaliscussed in Sec. VII. Section VIII presents an analysis of
ing exponents for the longitudinal and transverse structur¢ghe crossover lengths of the structure functions. Finally, a
functions at small scales are eq@al?’*2~*Many experi- summary and conclusions are provided in Sec. IX.
ments and DNSs have reported that higher order longitudinal
scaling exponents are larger than transverse ones. However,
some .researchers have argued thgt the difference is due O NUMERICAL SIMULATION
deviation from the assumed conditions, such as local homo-
geneity, isotropy, and the independence of small scales from The Navier—Stokes equations are integrated in Fourier
macroscale parameters. They have suggested that when tigace for unit density:
Reynolds number becomes large enough, the difference will

vanish?®:37:3940 (— + vk2| u=P(K) - 7TuX ]+, &)
In many aspects of turbulence research, there have been ot

guestions posed about the extent to which the local homoge- F(k)

neity and isotropy of the turbulent velocity field are attained.  (f(k,t)f(—k,s))=P(k) e o(t—s), 2

This will affect the small-scale statistics significantly. Recent

experimental studies have shown that local isotropy is parwherew is the vorticity vectorP(k) is the projection opera-
tially satisfied for lower order moment32®3"However, itis  tor, .7 denotes a Fourier transform, afids a solenoidal
not sufficient to examine only the conditions assumed in thé&aussian random force that is white in time. The spectrum of
above studies, and only a limited knowledge of the true flowthe random forc& (k) is constant over the low wave number
conditions is available so faf:*"-3® band and zero otherwise; the force is normalized as
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FIG. 1. Scaled energy spectia, “*»~%4(k7)%3E(k). The inertial range is FIG. 2. Normalized energy transfer fluk,(k)/e for R, =381 and 460.
0.00<k#%=<0.04 andK =1.64+0.04. A horizontal line indicateK =1.64.

of the total energy, the total enstrophy, and the skewness of
the longitudinal velocity derivative. The statistical averages
were computed as time averages over tens of large eddy
turnover times for the lower Reynolds number flows, and
over a few large eddy turnover times for the higher Reynolds

where €, is the average rate of the energy input per unity,mper flows. The resolution conditidn,., 7>1 was satis-
mass. A pseudo-spectral code was used to compute the Coflsq for most runs, except fdR, =460 in whichk ., 7 was

volution sums, and the aliasing error was effectively re-glightly less than unity K., 7=0.96). This does not ad-
moved. The time integration was performed using the four”\/ersely affect the results in the inertial range.

order Runge—Kutta—Gill method.
Physical quantities of turbulent flow include the total

J:F<k)dk=?m , 3

The computational time required for runs at M
=1024 resolution varied, depending on the statistical data

energy that was gathered. Typically, 60 h was required for one large
1 3 % eddy turnover time. The total time of the computations was
E(t)= §<U2>: EUZZJ E(k)dk, (40 more than 500 h for the longest ruik,(=381). Data col-
0 lected during the transition period to steady st@igout six
the average energy dissipation per unit mass large eddy turnover timg¢swere discarded. The relatively
" long time required to attain steady state was due to the low
?zva k?E(k)dK, (59  wave number band forcing. This imposes a severe computa-
0 tional restriction. Computations witlR, <284 were per-
the integral scale formed on a Fujitsu VPP700E parallel vector machine with
16 processors at RIKEN. Simulations of higligr were per-
L=(3_7T fwklE(k)dk) / E, (6) formed on a Fujitsu VPP5000/56 with 32 processors at the
4 Jo Nagoya University Computation Center.
the Taylor microscale
. o lll. ENERGY SPECTRUM
>\=(5E/ f sz(k)dk) : (7) Figure 1 shows the three-dimensional energy spectrum
0 calculated for each run. All of the curves are scaled to the
the Taylor microscale Reynolds number Kolmogorov units and multiplied bk>2. As the Reynolds
me number increases, the curves extend toward lower wave
R,=—, (8) numbers. The curves of flows with Reynolds numbers larger
v than R, =284 contain a finite plateau, which indicates that
and the Kolmogorov scale E(k)“k75/3. There is a bump when 0.6&k7<0.3 at the
3\ 14 high end of the inertial range, which is consistent with pre-
= (’;) _ (9)  Vious experimental and numerical observatibh&The nor-
€ malized energy transfer flux, defined by
The range of the Taylor microscale Reynolds number was 38 1 1 (=
to 460. The characteristic parameters of the DNS are listed in  =IIL(k)= ?fk T(k")dk' (10

Table 1”® Most of these are identical to Gotoh and
Fukayamd? but the averaging time foR, =381 was ex- is shown in Fig. 2, wher@ (k) is a nonlinear energy transfer
tended to 4.21 large eddy turnover times. A statisticallyfunction in the energy spectrum equatfbff. Between

steady state was confirmed by observing the time evolutio®.007<k#=<0.04, II(k)/e is approximately constant and
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102} Present DNS(R,=460) S 1 ments, and from the LRA. The agreement between the
N curves is satisfactory. Therefore we conclude that the present
- . . ‘ ‘ " DNS has successfully calculated a homogeneous turbulent
165 1074 1073 1072 107! 100 10" flow field in the inertial range of the energy spectrum.
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FIG. 3. Comparison of one-dimensional energy spectra. Symbols: experil-v' ONE-POINT STATISTICS

ments, solid line: present DNSR(=460), dashed line: statistical theory A Moments
(LRA and MLRA).
Some one-point moments of the velocity field are

us u?
close to unity; thus the flow is in an equilibrium state over %(U)E%a Sy(Uy) = <<u2—;z,/z (12)
the inertial range of the energy spectrum, corresponding to %
the plateaus in Fig. 1. The Kolmogorov constant given in (u*) (u) (uy)
Table | is determined using a least square fit between 0.007 Ka(u)= s Ka(uy)= w2 Ka(uy)= w2
<k#=0.04 on theR, >284 curves. In Ref. 43, the Kolmog- X y (13)

orov constant was reported Ks=1.65+0.05. However, the

averaging time has since been extended for e whereu is the velocity component in thr direction. The

—381run. TheR, =478 run differs slightly from statistical Vvariation of these moments with the Reynolds number is
equilibrium, sincel1(k)/€ is not exactly one; for this reason, SNOwn in Fig. 4 and listed in Table Il. The general behavior
the R, =478 data were not used for this analysis. The Kol-Of the curves is consistent with previous DNS and experi-
mogorov constant, computed using the data only from thénental datd?'*1%1%24 4 here are small effects of rela-

R, =381 and 460 runs, is t?vely low resolution onS; and K, for the velocity deriva-
tives for R, =381 and 460 data. The skewness factor of the
K=1.64+0.04, (1D velocity u is very small for runs with th&®, <125, and is of

which is in good agreement with experimental values and

16 ;
recent DNS daté: Th(_are are many DNSs reporting the TABLE Il. Moments of the velocity and velocity derivatives.
Kolmogorov constant higher than the value 1.64. However.

the length of the inertial range in those DNSs is not longR. Ss(u) Ka(u)  Ss(aufax)  Ky(aulax)  Ky(auldy)
enough to clearly observe ttke 5 range, and the top of the 38 0.0227 289  —0520 414 516
bump of the compensated energy spectkifiE(k) is un- 54 0.00563 2.86 —0517 4.47 6.00
derstood as the inertial range, so that the Kolmogorov con-70 0.00473 2.93 —-0.519 4.81 6.62
stant is read as about 2 as seen in Fiff The Kolmogorov ~ 125 0.0820 294 -0.529 5.65 8.19
constant 1.64 is also close to the value obtained using thg>? _g.gjﬁsl 22'9787 :8'231 S'gg 12;

LHDIA (1.77,%the LRA(1.72.*** These spectral theories .55 o168 589 —0545 o1 117

of turbulence are consistent with Lagrangian dynamics, are
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FIG. 5. Variation of velocity PDF with the Reynolds number. FIG. 7. Variation of the transverse velocity derivative PDF with the Rey-

nolds number.

the order of 0.2 for runs with th®,=284. The relatively

large values qf thg velocity skewness are caused by thepe exponent oK 4(u,) is larger than that oK,(u,); thus,
shorter averaging time used compared to the low Reynoldg,e pDF for the transverse velocity derivative has longer tails
number runs. Since most of the energy resides in the lowegfan those of the longitudinal velocity derivative. From ex-
wave number band, there are persistent large fluctuations eferimental observations, Shen and Warhaft reported that
the large scales of motion over longer time period. TheK4(ux)ocRg'37 and K4(uy)ocRg'25.26 Since there is scatter in
longer time average or the forcing at larger wave numberg,e experimetal data, the exponents in 84) by the present
would yield smaller velocity skewness. The flatness factor obNs are not inconsistent with the experimental data. Van
the velocity field is close to three, which is the Gaussianaita and Antonia studied the Reynolds number dependence

value. o _ ~ of Sy(uy) andK,(u,),* and found that
The skewness factor of the longitudinal velocity deriva- 0.12 0.32

tives is very insensitive to the Reynolds number, S3(U) xRy ™, Ky(uy)xRy™ for u=0.2, (16)
S;(uy) o R0370 (14) Sa(ug) RIS, K, (u) =R for ©=0.25,  (17)

where the exponent is determined by a least square fit. Theherep is the exponent defined Hy?)ocr ~# for the locally
average value is-0.53, which is consistent with experimen- averaged energy dissipation r&te.Generally, the Reynolds

tal observations over the range of Reynolds numbers studiegumber dependency @&; and K, in our DNSs is weaker

in the present work. However, the exponent is smaller thaithan observed in the experiments, irrespective of the type of
indicated by the experimental d&’® The flatness factors forcing used. We believe this is because the range of Rey-
for the longitudinal and transverse velocity derivatives in-nolds numbers in DNS is smaller than experimental flows,
crease with the Reynolds number as and there remain small-scale anisotropy effects in the experi-

ments.
Ka(Uu) =R, Ky(uy) o« RYS, (15)
B. Probability density functions

The probability density function conveys information

. ' ' ' ' ' o about single-point velocity statistics. It has been one of the
100 ¢ Gaussian ——1 central issues of turbulence research in the last decade.
Single-point PDFs for the velocity and its derivatives are
107 I shown in Figs. 5—7. A longer time period was necessary for
@‘ . g the time average to obtain well-converged PDF for the ve-
3 107 ] locity Q(u). The distributionQ(u) is close to Gaussian, and
S its tail extends to very low values of the order of 28 Such
g 107+ 1 values have not been reported in the literature. Q&)
curve forR, =381 is skewed negatively, but this is attributed
1078 . to the insufficient time-averaging periodour large eddy
turnover timegthat was used. The overall trend is ti@tu)
10710 X U . i : decays faster than a Gaussian distribution at large ampli-
-40 -30 -20 -10 X/O 10 20 30 40 tudes. This behavior was also observed in one-dimensional
"o/ Oue decaying and forced Burgers turbulerffé®
FIG. 6. Variation of the longitudinal velocity derivative PDF with the Rey- Jimenez has shown that the POB(u) is slightly sub-
nolds number. Gaussian as the energy spectrum decays fasterkhan®
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FIG. 8. Variation of the asymptotic tail of the transverse velocity derivative FIG. 9. Isotropy relation at the second order. Thin liBg:r(r)r ~23, thick
PDF with the Reynolds number. Both positive and negative sides are plotine: (D, (r)+ (r/2)(dD. (r)/dr))r =23 L/% and A/ are shown forR,
ted. The rightmost curve correspondsRp=460. =460.

This is consistent with the present DNS results. Studies ofinde, is the unit vector perpendiculer to andl is the unit
the Q(u) tail predict thatQ(w) = exp(—cw|®) when the forc-  tensor. Then the isotropy and incompressibility relations are
ing has a short correlation timé>? Here, w=u/(u?%? is ¢ dDLL(r)
the normalized velocity amplitude amds a nondimensional Dr(r)=D_ (N + = L,
constant. The asymptotic form @(u) was examined by 2 dr
plotting I —In(Q(w)] against Ifw|; however, theQ(w) tails 1
were too short to determine the true asymptotic form. D 11(r)= 5 arD Le(r). (23

The PDF for the longitudinal velocity derivative is
slightly skewed, as expected from the finite negative value ofn DNS, the solenoidal property of the Fourier amplitude
the skewness factor. The tail becomes longer as the Reynoldtelocity vectoru(k) is always satisfied to the level of nu-
number increases. Figure 7 shows that the PDF of the trangaerical error, which is smaller than 1&. Thus, the accu-
verse derivative is symmetric and has a longer tail than théacy of the above relations depends solely on the deviation
longitudinal derivative. from isotropy. The two sides of Eq&22) and(23) are com-

There are many theories for the PDF of the velocitypared forR, =125, 381, and 460 in Figs. 9 and 10. The
derivative. The asymptotic tail a(du/dy) is presented in curves in the figures are divided by andr, respectively,
Fig. 8, in which both the positive and negative sides areand the vertical axes of the plots are linear. The thick lines
plotted by assuming that the PDF is symmetric. The tailgepresent the left hand sides of E482) and(23), and the
gradually become longer as the Reynolds number increase#in lines correspond to the right-hand sides. The isotropy of
therefore,Q(s) is Reynolds-number dependent, and cannothe second and third order moments is excellent for scales
be represented in a single stretched exponential form dess thanL/2. The difference at larger separations is caused
Q(s)xexp(—bls"), wheres is the normalized amplitude of by the anisotropy due to the small number of energy-
du/dy andb is a nondimensional constant that is a functioncontaining Fourier modes. The curves ®(=381 and 460
of the Reynolds numbé?

(22)

0.4 T r
V. ISOTROPY i : l

The hypothesis of isotropy of the flow field is one of the 03 r
key components of K41. There are various methods to ex-
amine the degree of isotropy. One measure of isotropy can be & 0.2 |
obtained from the relations between the second and third 8
order longitudinal and transverse velocity structure func- 2 o1 b
tions. These are é '

o

10N

Dy =((8u))?), Dyr=((dv)?), (18 0
Di=((8u,)®), Dyrr=(du,(dv,)?), (19 ol . . )
where ! 10 100 1000
”n
Su,=(u(x+r)—u(x))-r/r, (20

FIG. 10. Isotropy relation at the third order. Thin lin@; t(r)r 2, thick
Sv,=(u(x+r)—u(x))-(1—rr/r?)-e , (21 line: ((1/6)(@/dr)rD (r))r~L L/% and\/ 75 are shown foR, = 460.
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FIG. 11. Terms in the Kanan—Howarth—Kolmogorov equation wheR,
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n

FIG. 12. Kolmogorov’s 4/5 lawl./  and\/ 7 are shown folR, =460. The
maximum values of the curves are 0.665, 0.771, 0.781, and 0.75R,for
=125, 284, 381, and 460, respectively.

in Fig. 9 are not horizontal, suggesting that the second order

structure function does not scale &&. The scaling expo-

Equation(24) is recovered by substituting Eq22) and(23)

nents will be examined later in this paper. The isotropic re/nto Ed.(27).

lations, such asD117=D1133 and D 2p05= 3D 2235= D 3333,
and Hill's higher order relations were not computéd.

VI. KARMAN-HOWARTH-KOLMOGOROV EQUATION

Figure 11 shows the results obtained when each term of
Eq. (24) is divided byer for R, =460. Curves in which/ 7
is larger tharr/7»=1200 are not shown, because the sign of
D, .. changes. A thin horizontal line indicates the Kolmog-
orov value 4/5. When the separation distance decreases, the

The energy budget for various scales is described by theffect of the large scale forcing used in the present DNS

Karman—Howarth—KolmogoroKHK) equation,

4_
gél’:

D
L,z

J
_DLLL+6V (24)

for steady turbulenc&®*®whereZz(r) denotes contributions
due to the external force given by

Z(r,t)=ﬁ (5f(r,t)- 5f(r,s))ds

_12rf°° 1 sinkr 3coskr 3sinkr E
) (BT k) T S Tk

(k)dk.

(29)
Since the external force spectruR(k) is localized in a
range of low wave numbers, the asymptotic fornzéf) for
small separations is given as
2= JoK2F(k)dk
T oF(odk
A generalized Keman—Howarth—Kolmogorov equation has
also been derivet~°3

2()= Ze k2 (26)
35 in™f 1

4 Jd
3 €= (DLt 2D +2v (D +2D1r) + W,
27
where
Wir=4 fx 1 coskr sinkr Fodk
(r)_ r 0 §+ (kr)Z_(kr)B ( ) y
2 _ 2
~— €3k for |ksr|<1. (29

15

decreases quickly, while the viscous term grows gradually.
The third order longitudinal structure functid | quickly
rises to the Kolmogorov value, remains there over the iner-
tial range(betweerr/ »~50 and 300, and then decreases. In
the inertial range, the force term decreases’asccording to
Eq. (26), while the viscous term increases 8™ 1({,<1)
whenr decrease$Since each term in the figure is divided by
(er), the slope of each curve is 2 aged— 2, respectively.
The sum of the three terms in the right hand side of 24)
divided by er is close to 4/5, the Kolmogorov value. The
deviation of the sum from the 4/5 law at the smallest scales
is due to the slightly lower resolution of the data at these
scales(kmax 77 IS close to ong At larger scales greater than
r/»=700, the deviation is caused by the finiteness of the

10! .
0 , 7
Tota Am
10° E ‘\
107k ]
é —@) (Drua+2Drry) ",
E )
= 02|
107 ¢ POWERY SR
e V(Er) E'( L+ 7'1‘)
10—4 ! s [k
1 10 100 1000

n

FIG. 13. Terms in the generalized #aan—Howarth—Kolmogorov equation

for R,=460. Thin solid line: 4/3.
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FIG. 14. Kolmogorov's 4/3 lawl./» and)/n are shown foR,=460. The 15 16, variation of PDF fowu, with r at R, =381. The classification of
maximum values of the curves for the 4/3 law are 0.564, 1.313, 1.297, angurves is the same as in Fig. 17.

1.259 forR, =125, 284, 381, and 460, respectively.

slow approach is due to the fact that (r) is the third

ensemble, which indicates the persistent anisotropy of tharder structure function and most positive contributions are
larger scales. The above findings are consistent with the cufanceled by negative ones. Thus only the slight asymmetry
rent knowledge of turbulence developed since KolmogorovOf the du. PDF contributes t®,, . The level of the plateau
although confirmation of some aspects of turbulence usin§f theR, =460 curve is slightly less than the others. A higher

actual data is new from both a numerical and experimentay@lue would be expected if the time average period used for
point of view>¢-°9-6° the R, =460 run were longer.

It is interesting and important to observe when the Kol- ~ The generalized Kanan—Howarth—Kolmogorov equa-
mogorov 4/5 law is satisfied as the Reynolds numbetion Eq.(27) is also examined in a similarE\shion. Figure 13
increase$:*6-%°Figure 12 shows curves of D (r)/(er) shows each term of the equation dividedédry a horizontal
for various Reynolds numbers. In this figure, the 4/5 lawline indicates the 4/3 law. The agreement between the present
applies when the curves are horizontal. The portion of thélata and theory is satisfactory. The third order moment
curves in whictr/>1200 is not shown. Although there is a SlOwly approaches the Kolmogorov value 4/3, as shown in
small but finite horizontal range whe®, > 284, the level of ~ Fig. 14. The maximum values of the curves of the 4/3 law
the plateau is still less than the Kolmogorov value. Theare 0.564, 1.313, 1.297, and 1.259 ®y=125, 284, 381,
maximum values of the curves are 0.665, 0.771, 0.781, an@nd 460, respectively.

0.757 for R,=125, 284, 381, and 460, respectively. The

value 0.781 for R,=381 is 2.5% less than 0.8. An VIl. STRUCTURE FUNCTIONS AND SCALING
asymptotic state is approached slowly, which is consisten't:'XPO'\‘ENTS

with recent studies. However, the asymptote is approached The velocity structure functions are defined as
faster than predicted by the theoretical estint&f¥.The Sk =(lau Py, SK(r)=(5v,["),

108 : . . . . : .
10° . : . , , , :
107 + - 107 ¢ 3
1072 t i 106 [
1073 | g —_ 10° F
= 104 | i =
~ 10 ‘3 10 |
= 107 J =
Q% B &} 108 b
& 10° i 2
107 i 10° b
1078 | 4 10! |
_9 | |
10 100 L L N N ) ! L
10710 0 5 10 15 20 25 30 35 40
-40 30 40 Su/Cs,

FIG. 17. Convergence of the tenth order accumulated mon@pfsu,) at
FIG. 15. Variation of thesu, PDF withr for R, =381. From the outermost R, =381 for various separations / 7=2.38<2""%, n=1,...,10. Curves are
curve, r,/np=2""tdx/9=2.38x2""1, n=1,...,10, wheredx=2/1024. for n=1,...10 from the uppermost, and the inertial range corresponds to
The inertial range corresponds itie=6, 7, 8. Dotted line: Gaussian. =6,7,8.
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FIG. 20. Plot of{ su?)r ~%7% againstr/ 7 for R,=70, 125, 284, 381, and
FIG. 18. Convergence of the tenth order accumulated mon@psiv,) 460.
whenR, =381 for various separations /. The curves are the same as in
Fig. 17.

whereg is the unit vector in the direction of the axis.
Sl[;/lq(r)=<|5ur|plévr|q>. (29) PDFs of the longitudinal an.d trgnsverse velocity differ-

' ences wherR, =381 are shown in Figs. 15 and 16 to exam-
When the separation is in the inertial range, the structurgne the global change of the velocity difference statistics with
functions obey the scaling law respect to scale. As the separation distance decreases, the

PDF deviates from a Gaussian distribution and its tail be-

(30 comes longer. The PDF for the longitudinal velocity incre-
Taking the absolute values of the velocity difference givesment is skewed negatively, reflecting the energy cascade to
well-converged statistics. smaller scales. However, the PDF for the transverse compo-

The higher the order of the structure functions, the largenents is almost symmetric and has a longer tail than the
the contributions of the PDF tails, so the statistical converdongitudinal PDF. The same trends were observed in the
gence of higher order structure functions is poor. To increas®DFs forR, =460. Therefore, using the absolute value of the
the statistical ensemble, the velocity structure functions wergransverse velocity difference is justified in the sense that
computed as follows. For a separation vectog, both positive and negative transverse velocity differences
| 8u,(x,s)|P is spatially averaged, then averaged for three dihave the same statistics.
rections of the separation vector, and finally averaged over The highest order of the structure function for which it is
time: feasible to obtain converged statistics is determined by ex-
amining the convergence of the moments of the velocity dif-
ferences,

S',;(r)ocrgt, S;(r)ocrgg, SF'\,’"q(r)ocrggﬂ,q.

3
1 t+T
<|6ur|p>:—auf T Y S Juxtre,9)
3N eddyJ t i=1 x

Co2)= [ 12/Pa)z, (32

—u(x,s)|p)ds, (31)

10

<u%>,—0,701

. . . 1 10 100 1000
1 10 100 1000 m
n

0.1

FIG. 21. Variation of the local scaling exponeﬁ(r) with the Reynolds
FIG. 19. Plot of(su?)r ~%7%* againstr/5 for R,=70, 125, 284, 381, and number.\/» andL/z for R, =460 are marked by arrows. A horizontal line
460. shows 0.696.
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FIG. 22. Variation of the local scaling exponetl(r) with the Reynolds
number.\/n andL/» for R,=460 are marked by arrows. A horizontal line

shows 1.0. shows 1.78.

wherez is a normalizedsu, or év,, andQ(z) is its PDF.
Figures 17 and 18 represedy(du,) andCqo(dv,), respec-
tively. The separation distances amg,/7=2""1dx/zy
=2.38x2""1, n=1,...,10, wherax=27/1024, and the in-
ertial range corresponds to=6, 7, 8. The tenth order struc-
ture functions converge well.

Consider first the second order structure functfonas
seen in Fig. 9, the curves @, (r)r %2 and Dy(r)r ~2?
are not horizontal. The curves dd , (r) multiplied by
r 970l andD+1(r) multiplied byr ~%"are given in Figs. 19

tions.

increases with the Reynolds number. Figures 21-24 i
how the longitudinal local scaling exponen

c%ting convergence of the scaling exponents with re

least square fit. The curves are almost horizontal wRen R, . (Plots of the eighth to tenth orders are not shown

=284, 381, and 460. The exponent 0.701 is larger than th
Kolmogorov value 2/3, but close to the value 0.696 reporte
by She and Leéque’® The difference 0.7012/3~0.034 is

small; it is difficult to observe this deviation in the energy (about 2/
spectrum, because the curves are not smooth in wavenumb&gh‘,jwior is
space(see Fig. 1. One reason that the small intermittency nents betwe
correction to the exponent can be found is that the average of
the structure functions is calculated over all the grid points inat
three directions, yielding an average over a large ensembl&’;

alue reported by She and \&gue’® When R, =460,

also observed for the transverse scalin
emn/ p=~50~\/7 and 300.
Figures 25-27 show the structure functions

FIG. 24. Variation of the local scaling exponeg‘h(r) with the Reynolds
number\/z andL/ % for R, =460 are marked by arrows. A horizontal line

(but redundant to some extentHowever, only a limited
number of Fourier modes are available in the inertial range
of the energy spectrum, leading to relatively large fluctua-

The width of the scaling range of the structure functions

llustrate

i

=d|og§.p(r)/dlogr, which is a function ofr/», changes
with the Reynolds number. As the Reynolds number in-
creases, a horizontal segment appears in the curve. This seg-
ment becomes longer and remains at a constant level, indi-

spect to
to save

pace. A horizontal line inserted in each figure indicates the

the

range of the constant scaling exponents starts/ at=100
7) and ends at/7~300 (aboutL/2%). The same

g expo-

),
(r) andsg’fq(r) atR, =460. The curves obtained when the
paration is greater than 120§ are not shown. For the

5 . . .
108 : , .
4 L
104 .
3 L
53 N 107} 1
s
2T ot
v 10° } .
1 L
1072 | _
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107
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n

FIG. 23. Variation of the local scaling exponeﬁ;(r) with the Reynolds
number. Values of\/» and L/ for R,=460 are marked by arrows. A FIG. 25. Plot of(|du,|?) againstr/y for various ordersR,=460.
horizontal line shows 1.28. curves represerg=1, 2,...,10 from the lowermost at =L/ 7.
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FIG. 26. Plot of(|v|P) againstr/7 for various ordersR,=460. The FIG. 28. Variation of the local scaling exponegtgr) with r/  for various
curves represemi=1, 2,...,10 from the lowermost af =L/7. orders.R, =460. The curves represept1, 2,...,10(from the lowermostin
B the scaling range. Horizontal lines show the values obtained by She and

Léveque, 0.696, 1.0, 1.28, and 1.78.

structure functions at smatl the slope of the curve is ap-
proximately p. The curves are straight for separations be-
tweenN/n andL/#. The straight portion 08,(r) is slightly centered o/ = 200.

L .
Ion_ger than that o8,(r), and exte_nds to smaller separat|ons.(4) When the ordep increases, the high ends of the shelves
This can be seen more clearly in plots of the local scaling for £T move fromL/(27) to a smaller separation, but the
exponentgsee below The values oisg(r) are larger than low gnds stay ak/7 '

those ofS,)Er). The m_|xed structure. functions for a given (5) The curves ofgg at higher orders are noisier than those
orderp+g=2n have different slopes: for example, the slope of ¢

M H M p-
of SAr) is larger than that o8, (r). (6) The average distance aff,,— ¢, within the scaling

The scaling exponer)ts of the struct_ure fP”C“O”S_ wh_en range becomes less with the orgefaster than that of
R, =460 are plotted against the separation distance in Figs. &
p+1~ Sp-

28-30. Shelves are observed in the curves. These are seg-

ments ir_1 which the scaling exponents are constant, which iﬁacts(l) to (4) indicate that when the Reynolds number is

the scaling range of the structure functions. The shelves b‘?rnite, the width and position of the scaling rangesﬂ;f(r)

come narrower as the order increases. Careful examinatifitter from those ofSL(r). The crossover length at which the
o(r).

(3) When the ordep increases, both the high and low ends
of the g; shelves move inward, and the scaling range is

reveals that: scaling behavior of the structure functions ceases due to the
(1) The scaling range @b(r) is between ®/pandL/(275),  effect of the viscosity is also different. As the separation
while that Ofsg(r) is betweern/s andL/(27). increases from the Kolmogorov scale, the crossover length
(2) Therefore, the scaling range 8f(r) is longer than that Ic(p) is defined as the length whepd{,,(r)/dr exceeds a
of S'F‘,(r). certain small negative value, say0.001, for the first time.
4
10* ' ' - 35 | ]
(2,6)
6, 3t 1
102 | 2442(3
. 0%) 25 | ‘
2,2
== 400 L ( 2 R 2} .
3
= 15} 1
3107 | 1 1
v
0.5 1
107 |
0 .
An L{n 10 100 1000
. 1 . . n
10 100 1000
n FIG. 29. Variation of the local scaling exponel{[ﬁ{r) with r/# for various

orders.R, =460. The curves represept=1, 2,...,10(from the lowermostin
FIG. 27. Plot of{|5u,|P| 5v,|%) againstr/ for various ordersR, =460. A the scaling range. Horizontal lines show the values obtained by She and
set of numbers denotep,q). Léveque, 0.696, 1.0, 1.28, and 1.78.
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FIG. 31. Variation of the crossover length with the order of the structure
FIG. 30. Variation of the local scaling exponeif$,(r) with r/7 for vari-  fnciions. Solid line with crosst L/5(R,=460), solid line with circle:
ous ordersR, =460. The curves represer, () =(2.2), (4.2), (2,4), (6,2, 1T/ 7(R,=460), dashed line with stat/7(R,=381), dashed line with
“, 4? (2.6, .(8 2, (6,4), (4,6), (2,8 (from the lowermostwith r/z=200. filled circle: II/n(RA:381). A horizontal line indicates\/n when R,
Horizontal lines show the values 1.28 and 1.78. — 460

Figure 31 shows the variation &f(p)/ » for the longitudinal
and transverse structure functions. The figure clearly indiintermittency exponenk. The results withu=0.25 are very
cates that the crossover length ﬁa‘(r) increases with the close to the present DNS results. The present DNS values for
order and approaches\2while that ofST(r) is A and ap- p=4 are slightly larger than the experimental values calcu-
proximately independent of the order. The above observatiotated by Dhruvaet al?® However, the difference is within the
implies that the Taylor microscale is the key length scale atrror bars, and is probably due to the differing Reynolds
the low end of the scaling rangéand is related to the struc- numbers of the flow(The experiments were performed at
ture of the velocity field. The relatively narro@\ffq shelves  Reynolds numbers between 10000 and 15)000.
resemble those OJL rather thangg For an order of up to There have been many arguments about the appropriate
eight, scaling ?ép;)?naezntg 391‘%71tr71§ longitudinal and transverse
T M M L exponentg>™<2em=2 0290 L Gince  there are considerable
Con<&2(n-1)2=" " <&22n-1)<¢2n (33 fluctuations, especially ir;rg [see Figs. 28 and 29, and fact
within the scaling ranges d®, =381 and 460. However, the (5) abovd, determination of the scaling exponents at orders
inequalities are weak. larger than six is difficult. These values will have large error
The scaling exponents measured in the scaling rangkars. The large fluctuations qu, indicate that the higher the
whenR, =381 and 460, and the values reported by She andrder of the structure functions, the more the moments are
Léveque, are listed in Table Iff and plotted in Fig. 32. The dominated by rare events. Thus, the sample size is smaller,
DNS values agree with the curves by She andégee up to  the statistics are less isotropic, and the statistical conver-
the sixth order but are slightly smaller at higher order. Thegence becomes poorer.
curve by the mean field theory by Yakhot is close to the  For lower order momentp<3, the scaling exponents
values ofg,ﬁ by presnet DNS? Arimitsu and Arimitsu de- should be equal even when the order is not an integer, since
rived analytically the scaling exponents by using the statisthe longitudinal and transverse structure functions are related
tics based on the Havrda—Charvat—Tsallis entr@®neral- to each other through Eq&2) and (23).
ized entropy.”>’ The theory contains one parameter, the  The fourth order moments are related to the second order

TABLE Ill. Scaling exponentsg = p/9+ 2(1- (2/3)”’3) is reported by She and kéque (Ref. 70. The exponents are determined over the range gf
[100,254, [60,204, [100,209 for gp , gp, and g(p o WhenR, =381, and[100,300, [60,200, [100,20Q whenR, =460, respectively.

4 4 3
p R,=381 R, =460 R,=381 R, =460 ot (p.q) R,=381 R, =460
1 0.370+0.004 0.366:0.007 0.369-0.004 0.37%0.013 0.364 2,2 1.29+0.01 1.28-0.01
2 0.709-0.009 0.70%0.014 0.70%0.01 0.709-0.013 0.696 4,2 1.78+0.02 1.74-0.02
3 1.02 +0.02 1.01+0.02 0.998-0.02 1.01+0.01 1.00 2,9 1.74+0.03 1.76-0.02
4 1.30 £0.02 1.29+0.03 1.26 +0.03 1.27+0.02 1.28 6,2 2.18+0.04 2.12:0.02
5 1.56 +0.03 1.54+0.03 1.49+0.04 1.49+0.003 1.54 (4,9 2.14+0.04 2.05-0.02
6 1.79 +0.04 1.77+0.04 1.69+0.05 1.67+0.04 1.78 (2,6) 2.08+0.04 1.98-0.02
7 1.99 +0.04 1.98+0.06 1.86 +0.05 1.81+0.06 2.00 (8,2 2.49+0.05 2.43-0.03
8 2.18 +0.04 2.17+0.07 2.00+0.04 1.93+0.09 2.21 (6,9 2.46+0.06 2.33-0.03
9 2.35 +0.04 2.35+0.08 2.11+0.05 2.02+0.13 2.41 (4,6) 2.41+0.04 2.23-0.04
10 2.49 +0.04 2.53+0.09 2.20+0.06 2.08+0.18 2.59 2,9 2.32+0.05 2.14-0.03

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity field statistics in homogeneous 1077

3 2
25+
1.5
2 -
s LSt ] 31
1 -
05
05 r
A
0 . . . . : : 0 s s "
0 2 4 6 8 10 12 10 100 1000
p n

FIG. 32. Variation of the scaling exponerfisand/; whenR,=460. Sym-  FIG. 34. Comparison of the fourth order scaling exponefits ¢, and
bols are the results of the present DNS, star; circle: {}. SL, MF, AA, (MR, =460. A horizontal line indicates 1.28.

and K62 are the curves by She and/égue modelRef. 70, Yakhot's mean '

field theory (Ref. 72, Arimitsu and Arimitsu’s generalized entropy theory

with ©=0.25, and K62 withu=0.25, respectively.

tion of the fourth order scaling exponents with separation
pressure structure functio(l(érp)2>=.<(p(xf N-P()?  distance for two Reynolds numbers. At the high end ofrthe
through the Poisson ket ">"This relation may serve range, the difference between the exponents is less. Although
as a constraint among the three structure functions at thg ig again difficult to draw definite conclusions from the
fourth order, but it is not restrictive in the sense that there i~°rigures, it seems that the differences between the three scal-
no direct relation betweesy , S;, andS;,.>*">"""*Nelkin  ing exponents decrease with the Reynolds nurfiber.
argued that the pressure spectrum can be expressed in terms g, higher order momentp=>4, there are no simple
of the dissipation spectrurB(k) =47k>7(e.ex+r)], the  equations to directly relate the longitudinal and transverse
enstrophy spectrunE®(k) =4mk>71(Q,0, )], and the  gyrycture functions. A dynamical equation relates different
spectrum of the product of the enstrophy and dissipatioqypes of structure functions at various ord&r&2 7778 vov
EM(k):4sz-fﬂ<€xQx+_r>]- He suggested that the three ex- et a1, have pointed from the view point of the irreducible
ponents _ are_ equal in the limit of high Reynolds yepresentation of the rotation symmetry group that the longi-
numbers™"®®” However, the exponents in the specfar  tydinal and transverse structure functions must have the
example,u® in ES(k)=C<e2k (kL) #‘] are not necessar- same asymptotic scaling exponents for infinite Reynolds
ily equal to those o8j(r), Si(r), or Sg’,'z(r). The former are  number, but different exponents can be observed when the
the spectra of the dissipation range quantities, while the lattescaling range is not long enoudghHe et al. discussed that
are the fourth order correlations of inertial range quantities.the scaling exponents for locally averaged enstrophy and dis-
The DNS values of the scaling exponents &fe=1.27,  sipation are equal for infinite Reynolds number, but may be
{¥,=1.28, andZ; = 1.29 forR, =460 which are obtained by different for finite Reynolds numbé?.From this argument,
averaging over the scaling range. The difference betweethey suggested that the scaling exponents for the longitudinal
these values is within 3%. Figures 33 and 34 show the variaand transverse structure functions are also equal at infinite
Reynolds numbers. Zhou and Antonia suggested that the dif-
ferenceA {,={;— ¢, vanishes at sufficiently large Reynolds
numbers’’ However, the present data indicate that the differ-
enceA(, for R,=381 and 460 is larger than the valig,
extrapolated from the experimental data. The exponents in
Table Il and Fig. 32 are average values over the entire scal-
ing range and indicat§;< g; for p>4. The overall trend of
the local scaling exponents within the scaling range suggests
that the rate of the increase Q;f with respect to the order is
slower than that ofg,'; [fact (6)]. Although the asymptotic
state is beyond the scope of the present DNS study, the above
observations and facts suggest tt;[%t is smaller thang'g,
when p>4. If some portion of this difference at higher or-
ders arises from the insufficient degree of isotropy, a longer
time average would provide insights into this problem. If
other portion of the difference comes from the insufficient
FIG. 33. Comparison of the fourth ordé}',. R,=381. A horizontal line length of the scaling range, it is necessary to extend farther
indicates 1.28. the scaling range even when we use the invariant scalar func-
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tions associated with the higher order velocity tensors, whichributions toSFL,(r) come from the regions of flow containing

requires far more computational resources. large negative gradients oti/9x whenp>1.5* The portion
of the fluid in which éu,>0 is stretched, and portion in
VIIl. CROSSOVER LENGTH which é6u,<0 is compressed in the direction of the separa-

tion vector. This is accompanied by squeezing or stretching

The scaling behavior of the velocity structure function of ampient fluid on a plane normal to the separation vector,
for a turbulent flow has been examined in detail inspiredyye to pressure action and the incompressibility of the flow.
with the success of statistical physics of phase transitionsrhys the velocity field is less singular than in the case of
The density structure function was introduced there to StUdBurgers turbulence. The resulting field has a ramp structure,
the structure of matter using photon, neutron, and electroRyt no shocks occur. For the ramp structure, a linear dimen-
scattering. The interaction potential between the molecules;ion of a large negative gradient domain/dx, sayl, ,
the crystal and fractal structure of the matter were obtaineg,ould be determined by the balance between the convection
from the techniques. Therefore, scaling exponents and othgjhg the pressure gradient. This differs from Burgers turbu-
physical quantities should be extracted from the velocity|ence, in which the shock width is determined By/v.
structure functions to provide more information about thegjnce the pressure gradient is a function of velocity, the de-
turbulent flow. In this section, the physical meaning of thependence of, on velocity indicates that the converse also
crossover length is considered on the basis of the structure gpjies: 5u,(<0) depends on, . A large orderp samples
the flow field. large Su,(<0) and large pressure gradients; therefore, the

It is useful to review the scaling exponents of velocity pajance between these quantities results inl arthat in-
structure functions for the one-dimensional Burgers turbugreases slowly witp and saturates at certain distarfabout
lence. The scaling exponent of the one-dimensional Burgerg)\). This explains the gradual increase of the crossover

29,80 : . :
turbulence i€ length with the order. Although the above scenario requires a
1 for p=1, mathematical analysf$;22it seems plausible that the essen-
{p= (34 tial difference between the longitudinal and transverse veloc-

P for  p<1. ity difference is that the incompressibility condition directly

The nonlinearity balances the viscous term and producesonstrains the former, whereas the constraint is only second-
shock waves. Thus, the velocity field resembles a sawtoothry for the latter.

wave, with random magnitudes and intervals of shocks. These findings suggest that the Taylor microseale a
Whenp<1, the contribution to the structure function occurs characteristic length that indicates the low end of the scaling
in the ramp of the sawtooth wave, in which the velocity field range in real space. This length scale contains more of the
is smooth and linear in; therefore/,=p. The shocks domi- physics of the Navier—Stokes dynamics than the Kolmog-
nate the structure function where 1. In this case, the shock orov length in the scaling range.

is so sharp that it has a definite length sdateAu/v, where A Burgers vortex consists of a strong vortex core sur-
Au is the velocity jump across the shock. Since the probabilfounded by a dissipation field. A similar structure is observed
ity of finding a shock within a distanaeis proportional tar, in homogeneous isotropic turbulence data from a DNS with a

and the amplitude of the moment is given by the velocitydiameter of approximately 1£%3 However,A\~507 is five
jump across the shock frontguP) = [ SuPQ(su,r)d(su), it  times the diameter of the structure, andig even longef®
follows that{,=1 and the crossover occurs at the length ofThis suggests thahe objects that attain the scaling law are
the shock width, i.el.~(ls)~u,ms/ v, which is independent those far outside the strong vortex cores and/or shear layers
of the order. Structure functions have been calculated previthis contrasts with the view that turbulence consists of many
ously up to the twentieth order from a DNS of decayingthin vortex tubes or filaments, as frequently observed in DNS
Burgers turbulencéFig. 5 in Ref. 80. The scaling was de- visualizations of regions with high vorticity. Objects in the
scribed by Eq(34), and the crossover length was indepen-scaling range are less definitive and have more extended
dent of the order. The most important point of this analysis isstructures. If the strong vortex tubes are the sinews of turbu-
that the singularity is very sharp and has a definite shape arldnce, the fluid objects in the inertial range would be the
length. muscles of turbulence. They stretch and/or compress the sin-

Now consider the transverse structure function inews(strong vortices
Navier—Stokes turbulence. The crossover IengtlSFTQf) is
mdspendent of the prder, W.hI.Ch strongly suggests the}t ther&_ SUMMARY AND DISCUSSION
exists a structure with a definite lengpproximately\) in
the velocity field. Such structures could be a shear layer of  The velocity field statistics of incompressible steady tur-
thickness\ or a vortex tube of radius. When the separation bulent flow have been studied using a high-resolution DNS
vectorr encompasses such objects anglgreater than, the  with up to N=1024 grid points. The range of the Taylor
Sg(r) whenp=1 begins to attain the scaling behavior. The microscale Reynolds number was between 38 and 460. Gen-
scaling exponer@; is determined by the velocity amplitudes erally, the results are consistent with previous findings, but
at the end points of the separation vector and the populatiothe quantitative data are more precise and accurate. This pro-
of such structures that are governed by the flow dynamics.vides new insights into turbulence.

The behavior of the longitudinal structure function is The energy spectra agree well with experimental data,
slightly different. For a given separation most of the con- and the inertial range spectrum is clearly observed for the
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first time. The Kolmogorov constant is 1.64, consistent withthe K41 scaling theory. Theg exponent is smaller thag‘I,L)
experimental values. The values of the moments of velocitywvhenp>4, but no definite conclusions can be made, since a
and velocity derivatives and their PDFs are consistent witHarger ensemble and longer scaling range are required.
other DNS and experimental values, but tHgjrdependence Careful examination shows that the scaling ranges of the
is generally weaker than observed in experiments. The taillongitudinal and transverse structure functions are different.
of PDFs were compared to theoretical predictions, but nd'he crossover length csb(r) is longer than that osg(r),
definite conclusions were obtained. increases with the order, and then approachesBe cross-

The isotropy of the second and third order structureover length ofsg(r) is A and approximately independent of
functions is well satisfied for scales of motion below half of the order. This difference is due to the structure of the turbu-
the integral scale, which is the upper limit of the inertial lence field characterized by the Taylor microscale, and sug-
range in the present DNS. The energy budgets were exangests that the objects that obey the scaling law are those that
ined in terms of the(generalizel Karman—Howarth—  are longer than R
Kolmogorov equation. The energy balance is also satisfied The present method of determining the scaling expo-
for every scale below the integral scale provided that thenents is more straightforward than ESS. Although the width
time average is sufficient. The Kolmogorov 4/5 and 4/3 lawsof scaling range obtained using the present method is not as
are almost achieved, but convergence with Reynolds numbdong as that of ESS, the results indicate that the crossover
is slow. length changes with the order and behaves differently for the

The Reynolds numbers of the flow in the present DNSlongitudinal and transverse structure functions. This could
are lower than those of experiments. However, the degree afot be determined with ESS. The difference in the position of
isotropy in the present data is very satisfactory compared tthe scaling ranges (S‘F;(r) andsg(r) raises a question about
the experiments, which requires the Reynolds number to bthe relevance of ESS, especially when used to find the scal-
high enough to obtain local isotropy at small scales. Thang exponents osg(r) in terms ofS'g(r). This point requires
isotropy of the velocity field in the present DNS is very closemore careful examination.
to the textbook description, although it is not perfect? DNS of turbulence has now reached the point where the

There are many reports in the literature stating that thenertial range statistics can be obtained directly. This pro-
inertial range, or more generally the scaling range, begins atides a powerful tool and valuable data for turbulence re-
axX n wherea is between 10 and 20. This estimate seemssearch. There are many aspects not addressed here: for ex-
reasonable from the point of view of the structure functionample, the behavior of velocity difference PDFs, the
alone. However, when the local scaling exponents are exanrelations amongst various structure functions, the conditional
ined, the true scaling range féu, starts at 10§, or about averages of terms in the Navier—Stokes equations, the pres-
2\, which is longer than the estimated length. The presensure statistics, etc. These are the goals of future high resolu-
DNS data show that the strength of the inequality over the¢ion DNS research of turbulent flows.
inertial range, usually defined as<r <L, indicates that 100
times » is at the low end. This agrees with the te_thOOKACKNOWLEDGMENTS
theory. On the other hand, the upper end of the scaling range
is L/b, whereb is of order of unity, provided that the forcing The authors are grateful to T. Ochiai and S. Wada for
is applied in the low wavenumber range and that the sampl#heir assistance of the computation. They thank T. Arimitsu,
size is large enough to satisfy isotropy. Therefore, as far abl. Arimitsu, T. Lundgren, J. Qian, Z. Warhaft, V. Yakhot, and
the qualitative features of the lower order statistics such aB. K. Yeung for their comments and discussions. The authors
the local homogeneity, isotropy, and energy budgets are cowish to thank the Nagoya University Computation Center
cerned, the K41 theory of turbulence is correct provided thagnd the Advanced Computing Center at RIKEN for provid-
the large scale forcing is well controlled. However, thereing the computational resources. This work was supported by
certainly exist deviations in the statistics from the K41 pre-a Grant-in-Aid for Scientific Researdit-2 12640118from
dictions for every order except that of the 4/5 law, eventhe Japan Society for the Promotion of Science.
under idealized conditions at large scales.

The cpnverg_ence of the scaling eXpon,emS of t,he Struc'lA. N. Kolmogorov, “The local structure of turbulence in incompressible
ture functions with the Reynolds number is examined and viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR
found to be satisfactory up to the tenth order for both the 30, 9 (1941.
longitudinal and transverse velocity differences. The scaling” N- Kolmogorov, “Dissipation of energy in locally isotropic turbu-

. . . ~ lence,” Dokl. Akad. Nauk SSSR2, 16 (1941).
exponents are Ejlrectly measured asTfunctlons of separatlonH' L. Grant, R. W. Stewart, and A. Moilliet, “Turbulence spectra from a
The exponentg;=0.701+0.014 and{;=0.709+0.013 are tidal channel,” J. Fluid Mech12, 241 (1962.
very close to each other and larger than the Kolmogorov“A. S. Monin and A. M. Yaglom Statistical Fluid Mechanigsvol. Il (MIT
value, 2/3. Equatior(22) indicates that the two exponents -ress. Cambridge, 1975 o .

. . .. A. Praskovsky, “Experimental verification of the Kolmogorov refined

must be equal. The small differentE%) is due to the finite  giijarity hypothesis,” Phys. Fluids A, 2589(1992.
sample size and small amount of flow anisotropy. Since®s. G. Saddoughi and S. V. Veeravalli, “Local isotropy in turbulent bound-
small differences remain in the scaling exponents, even at th%iryFleayg:::e?i:;gsgn@%lr?I?r?enzm\?:rr;;ﬂ. Fl;it:h“gefgﬁqs3srglv9i2-nstam .
seconq order,_d_etermmlng_the precise va_Iues of the expo-P'hys'. Fluids7, 2775(1995. y 9 :
nents is very difficult. The higher order scaling exponents aresg . Kraichnan, “Lagrangian-history closure approximation for turbu-
definitely anomalous and increase slower than predicted bylence,” Phys. Fluids, 575(1965.

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



1080 Phys. Fluids, Vol. 14, No. 3, March 2002 Gotoh, Fukayama, and Nakano

°R. H. Kraichnan, “Isotropic turbulence and inertial-range structure,” Phys.%G. He, G. D. Doolen, and S. Chen, “Calculations of longitudinal and

Fluids 9, 1728(1966. transverse velocity structure functions using a vortex model of isotropic
10y Kaneda, “Renormalized expansions in the theory of turbulence with the turbulence,” Phys. Fluidd1, 3743(1999.
use of the Lagrangian position function,” J. Fluid Med@7, 131(1981). S7T. Zhou and R. A. Antonia, “Reynolds number dependence of the small-

11y, Kaneda, “Inertial range structure of turbulent velocity and scalar fields scale structure of grid turbulence,” J. Fluid Mect06, 81 (2000.
in a Lagrangian renormalized approximation,” Phys. Fluiag 701 38A. Noullez, G. Wallace, W. Lempert, R. B. Miles, and U. Frisch, “Trans-
(1986. verse velocity increments in turbulent flow using the RELIEF technique,”
125, Chen, G. D. Doolen, R. H. Kraichnan, and Z. She, “On statistical J. Fluid Mech.339, 287 (1997.
correlations between velocity increments and locally averaged dissipatio®’V. S. L'vov, E. Podivilov, and I. Procaccia, “Invariants for correlations of

in homogeneous turbulence,” Phys. Fluid$5A458 (1993. velocity differences in turbulent fields,” Phys. Rev. Léet®, 2050(1997).

133, Jimmez, A. A. Wray, P. G. Saffman, and R. S. Rogallo, “The structure “°G. He, S. Chen, R. H. Kraichnan, R. Zhang, and Y. Zhou, “Statistics of
of intense vorticity in isotropic turbulence,” J. Fluid Mecl255 65 dissipation and enstrophy induced by localized vorticies,” Phys. Rev. Lett.
(1993. 81, 4636(1998.

1. P. Wang, S. Chen, J. Brasseur, and J. C. Wyngaard, “Examination of*A. Bershadskii, T. Nakano, D. Fukayama, and T. Gotoh, “Local multifrac-
hypothesis in the Kolmogorov refined turbulence theory through high- tal thermodynamics of 3D turbulence,” Eur. Phys. J1& 95 (2000.
resolution simulations, Part I. Velocity field,” J. Fluid MecB09, 113 42D, Fukayama, Ph.D. thesis, Chuo University, 2001.

(1996. 43T, Gotoh and D. Fukayama, “Pressure spectrum in homogeneous turbu-

151, Hosokawa, S. Oide, and K. Yamamoto, “Isotropic turbulence: Important lence,” Phys. Rev. Lett86, 3775(2001).
differences between true dissipation rate and its one-dimensional surrd“D. Fukayama, T. Nakano, A. Bershadskii, and T. Gotoh, “Local properties
gate,” Phys. Rev. Lett77, 4548(1996. of extended self-similarity in three-dimensional turbulence,” Phys. Rev. E

6p. K. Yeung and Y. Zhou, “On the universality of the Kolmogorov con- 64, 016304(2001).
stant in numerical simulation of turbulence,” Phys. Rev.58 1746 45T. Nakano, D. Fukayama, A. Bershadskii, and T. Gotoh, “Stretched log-

(1997. normal distribution and ESS in 3D turbulence,” J. Phys. Soc. Jgub-
’N. Cao, S. Chen, and G. D. Doolen, “Statistics and structures of pressure mitted).
in isotropic turbulence,” Phys. Fluidsl, 2235(1999. 46C. W. Van Atta and R. A. Antonia, “Reynolds number dependence of

18p, Vedula and P. K. Yeung, “Similarity scaling of acceleration and pressure skewness and flatness factors of turbulent velocity derivatives,” Phys. Flu-
statistics in numerical simulations of isotropic turbulence,” Phys. Fluids ids 23, 252(1980.

11, 1208(1999. 4’R. A. Antonia and B. R. Pearson, “Effect of initial conditions on the mean
19T, Gotoh and R. S. Rogallo, “Intermittency and scaling of pressure at energy dissipation rate and the scaling experiment,” Phys. R62, B086

small scales in isotropic forced turbulence,” J. Fluid Me&®6, 257 (2000.

(1999. 48T, Gotoh and R. H. Kraichnan, “Statistics of decaying Burgers turbu-

20T, Gotoh and K. Nagaya, “On universality of statistics of pressure field in lence,” Phys. Fluids A5, 445 (1993.
homogeneous turbulenceProceedings of IUTAM Symposium on Geom- “°T. Gotoh, “Probability density functions in steady-state Burgers turbu-
etry and Statistics of Turbulencedited by T. KambéKluwer, New York, lence,” Phys. Fluidsl1, 2143(1999.
2002). 503, Jimeez, “Turbulent velocity fluctuations need not be Gaussian,” J.
2IA. N. Kolmogorov, “A refinement of previous hypothesis concerning the  Fluid Mech. 376, 139(1998.
local structure of turbulence in a viscous incompressible fluid at high®lg. Barkovsky, G. Falkovich, I. Kolokolov, and V. Lebedeyv, “Intermittency

Reynolds number,” J. Fluid Mech.3, 82 (1962. of Burger’s turbulence,” Phys. Rev. Leff8, 1452(1997).
#2U. Frisch, Turbulence: The Legacy of A. N. Kolmogor@ambridge Uni-  52G. Falkovich and V. Levedev, “Single-point velocity distribution in turbu-
versity Press, Cambridge, 1995 lence,” Phys. Rev. Lett79, 4159(1997).
M. Nelkin, “Universality and scaling in fully developed turbulence,” Adv. 53R, Benzi, L. Biferale, G. Paladin, A. Vulpiani, and M. Vergassola, “Mul-
Phys.43, 143(1994. tifractality in the statistics of the velocity gradients in turbulence,” Phys.
24F. Anselmet, Y. Gagne, E. J. Hopfinger, and R. A. Antonia, “Higher-order Rev. Lett.67, 2299(1991).
velocity structure functions in turbulent shear flows,” J. Fluid MehQ, 54R. J. Hill, “Equations relating structure functions of all orders,” J. Fluid
63 (1984. Mech. 434, 379(2009).

253. Dhruva, Y. Tsuji, and K. R. Sreenivasan, “Transverse structure func-5g. A. Novikov, “Functionals and the random-force method in turbulence
tions in high Reynolds numbers turbulence,” Phys. Revs@& R4928 theory,” Zh. Eksp. Teor. Fiz47, 1919(1964 [Sov. Phys. JETRO0, 1290

(1997. (1965].
26X, Shen and Z. Warhaft, “The anisotropy of the small scale structure in56F, Mc?i]sy, P. Tabeling, and H. Willaime, “Kolmogorov equation in a fully
high Reynolds numberR, ~1000) turbulent shear flow,” Phys. Fluid®, developed turbulence experiment,” Phys. Rev. L&&. 3994(1999.
2976 (2000. 57E. Lindborg, “A note on Kolmogorov’s third-order structure-function law,
27X. Shen and Z. Warhaft, “Longitudinal and transverse structure functions the local isotropy hypothesis and the pressure-velocity correlation,” J.
in sheared and unsheared wind-tunnel turbulence,” Phys. FiLAd870 Fluid Mech.326, 343(1996.
(2002. 58R. Hill, “Applicability of Kolmogorov's and Monin’s equation of turbu-

2R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, and S. lence,” J. Fluid Mech353, 67 (1999.
Succi, “Extended self-similarity in turbulent flows,” Phys. Rev4B, R29 59 R. Sreenivasan, S. I. Vainshtein, R. Bhiladvala, I. San Gil, S. Chen, and
(1993. N. Cao, “Asymmetry of velocity increments in fully developed turbulence
2°R. Benzi, S. Ciliberto, C. Baudet, and G. R. Chavarria, “On the scaling of and the scaling of low-order moments,” Phys. Rev. L&ft. 1488(1996.
three-dimensional homogeneous and isotropic turbulence,” Physg@ D ®°R. A. Antonia, M. Ould-Rouis, F. Anselmet, and T. Zhou, “Analogy be-
385(1995. tween prediction of Kolmogorov and Yaglom,” J. Fluid MecB32 395
30M. Briscolini, P. Santangelo, S. Succi, and R. Benzi, “Extended self- (1997.
similarity in the numerical simulation of three dimensional homogeneous®D. Fukayama, T. Oyamada, T. Nakano, T. Gotoh, and K. Yamamoto,

flows,” Phys. Rev. E50, R1745(1994). “Longitudinal structure functions in decaying and forced turbulence,” J.
31, Stolovitzky and K. R. Sreenivasan, “Scaling of structure functions,” Phys. Soc. Jpr69, 701 (2000.

Phys. Rev. &8, R33(1993. 62R. A. Antonia, T. Zhou, L. Danaila, and F. Anselmet, “Streamwise inho-
%20. N. Boratav, “On longitudinal and lateral moment hierarchy in turbu- mogeneity of decaying grid turbulence,” Phys. Fluity 3086(2000.

lence,” Phys. Fluids®, 3120(1997. 83|, Danaila, F. Anselmet, T. Zhou, and R. A. Antonia, “Turbulent energy
333, Chen, K. R. Sreenivasan, M. Nelkin, and N. Cao, “A refined similarity ~scale budget equations in a fully developed channel flow,” J. Fluid Mech.

hypothesis for transverse structure functions,” Phys. Rev. Z&t2253 430, 87 (2001.

(1997. 843, 1. Vainshtein and K. R. Sreenivasan, “Kolmogorov’s 4/5 law and inter-
340. N. Boratav and R. B. Pelz, “Structures and structure functions in the mittency in turbulence,” Phys. Rev. Leff3, 3085(1994.

inertial range of turbulence,” Phys. Flui® 1400(1997. %5L. Danaila, F. Anselmet, T. Zhou, and R. A. Antonia, “A generalization of
35W. Van de Water and J. A. Herweijer, “High-order structure functions of ~ Yaglom’s equation which accounts for the large-scale forcing in heated

turbulence,” J. Fluid Mech387, 3 (1999. decaying turbulence,” J. Fluid Mecl391, 359(1999.

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity field statistics in homogeneous 1081

663, Qian, “Inertial range and the finite Reynolds number effect of turbu- ments in three dimensional turbulence,” arXiv:nlin.CD/0105046 May

lence,” Phys. Rev. E55, 337 (1997). 2001.
S7E. Lindborg, “Correction to the four-fifth law due to variations of the "°E. Aurell, U. Frisch, J. Lutsko, and M. Vergassola, “On the multifractal
dissipation,” Phys. Fluid41, 510(1999. properties of the energy dissipation derived from turbulence data,” J. Fluid
68). Qian, “Slow decay of the finite Reynolds number effect of turbulence,” Mech. 238 467 (1992.
Phys. Rev. E50, 3409(1999. 80T, Gotoh, “Inertial range statistics of Burgers turbulence,” Phys. Flids
9T, Lundgren, “Kolmogorov two-thirds law by matched asymptotic expan- 3985 (1994).
sion,” Phys. Fluids14, 638(2002. 81T, Gotoh, T. Nakano, and N. Takahashi, “Probability density function for
707, S. She and E. vdque, “Universal scaling laws in fully developed velocity from the view point of conditional average,” Research Inst. for
turbulence,” Phys. Rev. Letf72, 336 (1994. Applied Mech. Report,Turbulence Phenomena and Related Togics
"R. Kerr, M. Meneguzzi, and T. Gotoh, “An inertial range crossover in Japanese 10ME-S4, Kyushu University, April 1999, pp. 137.
structure functions,” Phys. Fluids3, 1985(2001). 82T Ochiai, Master thesis, Nagoya Institute of Technology, 2001.
2V, Yakhot, “Mean-field approximation and a small parameter in turbu- &T. Miyauchi and M. Tanahashi, “Coherent fine scale structure in turbu-
lence theory,” Phys. Rev. B3, 026307(2002. lence,” Proceedings of IUTAM Symposium on Geometry and Statistics of
73T. Arimitsu and N. Arimitsu, “Analysis of fully developed turbulence in  Turbulence edited by T. KambeKluwer, New York, 2001
terms of Tsallis statistics,” Phys. Rev. @&, 3237(2000. 84R. A. Antonia, B. R. Satyaprakash, and A. J. Chambers, “Reynolds num-
74T, Arimitsu and N. Arimitsu, “Analysis of turbulence by statistics based ber dependence of velocity structure functions in turbulent shear flows,”
on generalized entropies,” Physica2®5 177 (2001). Phys. Fluids25, 29 (1982.
M. Nelkin and S. Chen, “The scaling of pressure in isotropic turbulence,” ®R. A. Antonia, B. R. Pearson, and T. Zhou, “Reynolds number dependence
Phys. Fluidsl0, 2119(1998. of second-order velocity structure functions,” Phys. Fluitis, 3000
"®R. J. Hill and J. M. Wilczak, “Pressure structure functions and spectra for (2000).
locally isotropic turbulence,” J. Fluid Mecl296, 247 (1995. 86y, S. L'vov and I. Procaccia, “Viscous lengths in hydrodynamic turbu-
"R. J. Hill and O. N. Boratav, “Next order structure-function equations,” lence are anomalous scaling functions,” Phys. Rev. 7tt3541(1996.
Phys. Fluidsl3, 276 (2001). 87M. Nelkin, “Enstrophy and dissipation must have the same scaling expo-

83, Kurien and K. R. Sreenivasan, “Dynamical equations for high-order nent in the high Reynolds number limit of fluid turbulence,” Phys. Fluids
structure functions, and a comparison of a mean field theory with experi- 11, 2202(1999.

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



