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Velocity field statistics in homogeneous steady turbulence obtained
using a high-resolution direct numerical simulation
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Velocity field statistics in the inertial to dissipation range of three-dimensional homogeneous steady
turbulent flow are studied using a high-resolution DNS with up toN510243 grid points. The range
of the Taylor microscale Reynolds number is between 38 and 460. Isotropy at the small scales of
motion is well satisfied from half the integral scale~L! down to the Kolmogorov scale~h!. The
Kolmogorov constant is 1.6460.04, which is close to experimentally determined values. The third
order moment of the longitudinal velocity difference scales as the separation distancer, and its
coefficient is close to 4/5. A clear inertial range is observed for moments of the velocity difference
up to the tenth order, between 2l'100h and L/2'300h, wherel is the Taylor microscale. The
scaling exponents are measured directly from the structure functions; the transverse scaling
exponents are smaller than the longitudinal exponents when the order is greater than four. The
crossover length of the longitudinal velocity structure function increases with the order and
approaches 2l, while that of the transverse function remains approximately constant atl. The
crossover length and importance of the Taylor microscale are discussed. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1448296#
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I. INTRODUCTION

Kolmogorov studied the statistical laws of a veloci
field for small scales of turbulent motion at high Reynol
numbers.1,2 Two hypotheses were introduced in his theo
~hereafter K41 for short!: local isotropy and homogeneit
exists; and there is an inertial range in the energy spect
of the flow that is independent of viscosity and large-sc
properties at sufficiently high Reynolds numbers. The m
prominent conclusion of his theory is the presence of
Kolmogorov spectrumE(k)5K ē2/3k25/3 in the inertial
range, whereē is the average rate of energy dissipation p
unit mass andK is a universal constant.

Since K41, there has been a considerable amount o
fort made to study the turbulent velocity field statistics in t
inertial range, and the energy spectrum has been a ce
quantity of interest. The Kolmogorov spectrum and const
have been measured in field and laboratory experiment3–7

The exponent for the inertial range spectrum is now wid
accepted as25/3, with a small correction to account for flow
intermittency. The Kolmogorov constantK is between 1.5
and 2. After studying the results of many experimen
Sreenivasan stated thatK is 1.6260.17.7 The spectral theory
of turbulence has also been used to predict the Kolmogo
constant. The value ofK is 1.77 when the Lagrangian histor
direct interaction approximation~LHDIA ! is used,8,9 and
1.72 when the Lagrangian renormalized approximat

a!Electronic mail: gotoh@system.nitech.ac.jp
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~LRA! is used.10,11These are fully systematic theories that
not contain anyad hocparameters.

Direct numerical simulations~DNSs! of turbulent flows
are now performed at higher Reynolds numbers, due to
recent dramatic increase in computational power. In the e
90’s, the resolution of DNS reachedN55123 grid points
with a Taylor microscale Reynolds numberRl of
210;240.12–20 Most high-resolution DNSs have been pe
formed for steady turbulence conditions to achieve high R
nolds numbers and obtain reliable statistics. Although res
were reported withRl greater than 200, an inertial rang
spectrum was observed only for the lowest narrow wa
number band at which forcing was applied. The Kolmogor
constant was inferred to be about 1.5;2 in Ref. 14 and 1.62
in Ref. 16, but these results are not convincing, due to
insufficient width of the scaling range, anisotropy of the flo
field, limited ensemble size, forcing techniques used, a
numerical limitations of the simulations.

Intermittency has also attracted the interest of resea
ers. Since Kolmogorov’s intermittency theory~hereafter
K62!,21 many theoretical and statistical models of interm
tency have been developed.4,22,23 The scaling exponents o
higher order structure functions for velocity differences
the inertial range were studied intensively. Intermittency
creases with a decrease in the size of the scales of mo
The small-scale statistics gradually deviate from a Gaus
distribution, and the scaling exponents differ from those p
dicted by K41.

Experiments at very high Reynolds numbers have b
5 © 2002 American Institute of Physics

e or copyright; see http://pof.aip.org/about/rights_and_permissions



4
3
4

1066 Phys. Fluids, Vol. 14, No. 3, March 2002 Gotoh, Fukayama, and Nakano

Down
TABLE I. DNS parameters and statistical quantities of the runs.Teddy
av is the period used for the time average.

Rl N kmax n cf Forcing range Teddy
av E ē L l h(31022) K

38 1283 60 1.503 1022 1.30 A3<k<A12 22.6 1.99 1.19 0.891 0.501 4.10 ¯

54 2563 121 7.003 1023 0.70 A3<k<A12 14.9 1.39 0.627 0.829 0.393 2.72 ¯

70 2563 121 4.003 1023 0.50 A3<k<A12 49.7 1.16 0.457 0.785 0.318 1.93 ¯

125 5123 241 1.353 1023 0.50 A3<k<A12 5.52 1.25 0.492 0.744 0.185 0.841 ¯

284 5123 241 6.003 1024 0.50 1<k<A6 3.03 1.96 0.530 1.246 0.149 0.449 1.6
381 10243 483 2.803 1024 0.51 1<k<A6 4.21 1.74 0.499 1.139 0.0989 0.258 1.6
460 10243 483 2.003 1024 0.51 1<k<A6 2.14 1.79 0.506 1.150 0.0841 0.199 1.6
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performed in the atmospheric boundary layer and in h
wind tunnels, and the measured scaling exponents w
found to deviate from K41 scaling.5,6,24,25,84However, there
have been arguments made about the lack of small-scale
isotropy and homogeneity in these experiments, which m
be affected by the large-scale shear.25,26

For experiments at moderate Reynolds numbers un
relatively well-controlled laboratory conditions, the width
the scaling range is usually not large enough to determine
scaling exponents precisely. Extended self-similarity~ESS!
has been exploited to overcome this difficulty and applied
various turbulent flows in both experiments and DNSs.28–31

The idea is to measure the scaling exponents of the struc
functions when they are plotted against the third order l
gitudinal structure function, rather than to use the separa
distance. The width of the scaling range is longer than t
obtained with the usual method at low to moderate Reyno
numbers. The scaling exponents are anomalous, but do a
with those obtained from high Reynolds number experime
up to a certain order.24,28–31However, there is no consensu
as to why the structure functions give a longer inertial ran
or what is missing from the flow statistics as a result. Al
there is no unique way to determine the scaling expone
for the transverse and mixed velocity structure functions,
cause those higher order structure functions can be plo
against other types of third order structure functions as w
as the third order longitudinal structure function.

There also have been arguments about whether the
ing exponents for the longitudinal and transverse struc
functions at small scales are equal.25–27,32–38Many experi-
ments and DNSs have reported that higher order longitud
scaling exponents are larger than transverse ones. How
some researchers have argued that the difference is du
deviation from the assumed conditions, such as local ho
geneity, isotropy, and the independence of small scales f
macroscale parameters. They have suggested that whe
Reynolds number becomes large enough, the difference
vanish.36,37,39,40

In many aspects of turbulence research, there have b
questions posed about the extent to which the local homo
neity and isotropy of the turbulent velocity field are attaine
This will affect the small-scale statistics significantly. Rece
experimental studies have shown that local isotropy is p
tially satisfied for lower order moments.25,26,37However, it is
not sufficient to examine only the conditions assumed in
above studies, and only a limited knowledge of the true fl
conditions is available so far.26,37,38
loaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP licens
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A DNS with a sufficiently large grid size provides
better opportunity to examine the points raised above. It
the advantage that any physical quantity can be meas
directly without deforming the flow field. In the presen
study, a series of large scale DNSs have been performed
high resolution of up toN510243 and Rl5460.41–45 The
inertial range of the turbulence field has a considera
length, and useful velocity statistics can be extracted suc
the Kolmogorov constant, the energy spectrum, veloc
structure functions up to the tenth order, their scaling ex
nents, and probability density functions for velocity diffe
ences. To the authors’ best knowledge, these are the
DNS data in the inertial range; the data provide new insi
into the inertial and dissipation ranges.

The main purposes of the present paper are to desc
the statistics of the velocity field in an incompressible stea
turbulent flow obtained from the DNS, and to reexami
current knowledge of turbulence, developed since K41. T
paper is organized as follows. The numerical aspects of
present DNS are described in Sec. II, and the energy s
trum is examined in Sec. III. The variation of single poi
quantities and probability density functions~PDFs! with the
Reynolds number is discussed in Sec. IV. The isotropy of
second and third order moments of the velocity difference
examined in Sec. V, and the energy budget is examine
terms of the Ka´rmán–Howarth–Kolmogorov equation in
Sec. VI. The structure functions and scaling exponents
discussed in Sec. VII. Section VIII presents an analysis
the crossover lengths of the structure functions. Finally
summary and conclusions are provided in Sec. IX.

II. NUMERICAL SIMULATION

The Navier–Stokes equations are integrated in Fou
space for unit density:

S ]

]t
1nk2Du5P~k!•F @uÃv#k1f, ~1!

^f~k,t !f~2k,s!&5P~k!
F~k!

4pk2 d~ t2s!, ~2!

wherev is the vorticity vector,P~k! is the projection opera-
tor, F denotes a Fourier transform, andf is a solenoidal
Gaussian random force that is white in time. The spectrum
the random forceF(k) is constant over the low wave numbe
band and zero otherwise; the force is normalized as
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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E
0

`

F~k!dk5 ē in , ~3!

where ē in is the average rate of the energy input per u
mass. A pseudo-spectral code was used to compute the
volution sums, and the aliasing error was effectively
moved. The time integration was performed using the fou
order Runge–Kutta–Gill method.

Physical quantities of turbulent flow include the tot
energy

E~ t !5
1

2
^u2&5

3

2
ū25E

0

`

E~k!dk, ~4!

the average energy dissipation per unit mass

ē52nE
0

`

k2E~k!dk, ~5!

the integral scale

L5S 3p

4 E
0

`

k21E~k!dkD Y E, ~6!

the Taylor microscale

l5S 5EY E
0

`

k2E~k!dkD 1/2

, ~7!

the Taylor microscale Reynolds number

Rl5
ūl

n
, ~8!

and the Kolmogorov scale

h5S n3

ē D 1/4

. ~9!

The range of the Taylor microscale Reynolds number was
to 460. The characteristic parameters of the DNS are liste
Table I.43 Most of these are identical to Gotoh an
Fukayama,43 but the averaging time forRl5381 was ex-
tended to 4.21 large eddy turnover times. A statistica
steady state was confirmed by observing the time evolu

FIG. 1. Scaled energy spectra,ē21/4n25/4(kh)5/3E(k). The inertial range is
0.007<kh<0.04 andK51.6460.04. A horizontal line indicatesK51.64.
loaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP licens
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of the total energy, the total enstrophy, and the skewnes
the longitudinal velocity derivative. The statistical averag
were computed as time averages over tens of large e
turnover times for the lower Reynolds number flows, a
over a few large eddy turnover times for the higher Reyno
number flows. The resolution conditionkmaxh.1 was satis-
fied for most runs, except forRl5460 in whichkmaxh was
slightly less than unity (kmaxh50.96). This does not ad
versely affect the results in the inertial range.

The computational time required for runs at aN
510243 resolution varied, depending on the statistical d
that was gathered. Typically, 60 h was required for one la
eddy turnover time. The total time of the computations w
more than 500 h for the longest run (Rl5381). Data col-
lected during the transition period to steady state~about six
large eddy turnover times! were discarded. The relativel
long time required to attain steady state was due to the
wave number band forcing. This imposes a severe comp
tional restriction. Computations withRl<284 were per-
formed on a Fujitsu VPP700E parallel vector machine w
16 processors at RIKEN. Simulations of higherRl were per-
formed on a Fujitsu VPP5000/56 with 32 processors at
Nagoya University Computation Center.

III. ENERGY SPECTRUM

Figure 1 shows the three-dimensional energy spect
calculated for each run. All of the curves are scaled to
Kolmogorov units and multiplied byk5/3. As the Reynolds
number increases, the curves extend toward lower w
numbers. The curves of flows with Reynolds numbers lar
than Rl5284 contain a finite plateau, which indicates th
E(k)}k25/3. There is a bump when 0.04<kh<0.3 at the
high end of the inertial range, which is consistent with p
vious experimental and numerical observations.6,16 The nor-
malized energy transfer flux, defined by

1

ē
P~k!5

1

ē Ek

`

T~k8!dk8 ~10!

is shown in Fig. 2, whereT(k) is a nonlinear energy transfe
function in the energy spectrum equation.4,22 Between
0.007<kh<0.04, P(k)/ ē is approximately constant an

FIG. 2. Normalized energy transfer flux,P(k)/ ē for Rl5381 and 460.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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close to unity; thus the flow is in an equilibrium state ov
the inertial range of the energy spectrum, corresponding
the plateaus in Fig. 1. The Kolmogorov constant given
Table I is determined using a least square fit between 0.
<kh<0.04 on theRl.284 curves. In Ref. 43, the Kolmog
orov constant was reported asK51.6560.05. However, the
averaging time has since been extended for theRl

5381 run. TheRl5478 run differs slightly from statistica
equilibrium, sinceP(k)/ ē is not exactly one; for this reason
the Rl5478 data were not used for this analysis. The K
mogorov constant, computed using the data only from
Rl5381 and 460 runs, is

K51.6460.04, ~11!

which is in good agreement with experimental values a
recent DNS data.7,16 There are many DNSs reporting th
Kolmogorov constant higher than the value 1.64. Howev
the length of the inertial range in those DNSs is not lo
enough to clearly observe thek25/3 range, and the top of the
bump of the compensated energy spectrumk5/3E(k) is un-
derstood as the inertial range, so that the Kolmogorov c
stant is read as about 2 as seen in Fig. 1.16 The Kolmogorov
constant 1.64 is also close to the value obtained using
LHDIA ~1.77!,8,9 the LRA ~1.72!.10,11These spectral theorie
of turbulence are consistent with Lagrangian dynamics,

FIG. 3. Comparison of one-dimensional energy spectra. Symbols: ex
ments, solid line: present DNS (Rl5460), dashed line: statistical theor
~LRA and MLRA!.
loaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP licens
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derived systematically, and contain noad hoc parameters.
Figure 3 shows the one-dimensional energy spectrum
tained from the present DNS withRl5460, from experi-
ments, and from the LRA. The agreement between
curves is satisfactory. Therefore we conclude that the pre
DNS has successfully calculated a homogeneous turbu
flow field in the inertial range of the energy spectrum.

IV. ONE-POINT STATISTICS

A. Moments

Some one-point moments of the velocity field are

S3~u![
^u3&

^u2&3/2, S3~ux![
^ux

3&

^ux
2&3/2, ~12!

K4~u![
^u4&

^u2&2 , K4~ux![
^ux

4&

^ux
2&2 , K4~uy![

^uy
4&

^uy
2&2 ,

~13!

where u is the velocity component in thex direction. The
variation of these moments with the Reynolds number
shown in Fig. 4 and listed in Table II. The general behav
of the curves is consistent with previous DNS and expe
mental data.13,14,18,19,26,46,47There are small effects of rela
tively low resolution onS3 and K4 for the velocity deriva-
tives for Rl5381 and 460 data. The skewness factor of
velocity u is very small for runs with theRl<125, and is of

ri-

FIG. 4. Variation of the moments of the velocity and velocity gradient w
the Reynolds number. Line: present DNS, circle:K4(uy) ~Jiménez et al.,
Ref. 13!, solid square:K4(u) ~Jiménez et al., Ref. 13!, square:K4(ux)
~Wang et al., Ref. 14!, plus: K4(ux) ~Vedula and Yeung, Ref. 18!, star:
2S3(ux) ~Wanget al., Ref. 14!.

TABLE II. Moments of the velocity and velocity derivatives.

Rl S3(u) K4(u) S3(]u/]x) K4(]u/]x) K4(]u/]y)

38 0.0227 2.89 20.520 4.14 5.16
54 0.00563 2.86 20.517 4.47 6.00
70 0.00473 2.93 20.519 4.81 6.62

125 0.0820 2.94 20.529 5.65 8.19
284 0.0231 2.77 20.531 6.63 10.1
381 20.246 2.98 20.574 7.90 12.2
460 20.168 2.89 20.545 7.91 11.7
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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the order of 0.2 for runs with theRl>284. The relatively
large values of the velocity skewness are caused by
shorter averaging time used compared to the low Reyn
number runs. Since most of the energy resides in the low
wave number band, there are persistent large fluctuation
the large scales of motion over longer time period. T
longer time average or the forcing at larger wave numb
would yield smaller velocity skewness. The flatness facto
the velocity field is close to three, which is the Gauss
value.

The skewness factor of the longitudinal velocity deriv
tives is very insensitive to the Reynolds number,

S3~ux!}Rl
0.0370, ~14!

where the exponent is determined by a least square fit.
average value is20.53, which is consistent with experimen
tal observations over the range of Reynolds numbers stu
in the present work. However, the exponent is smaller t
indicated by the experimental data.26,46 The flatness factors
for the longitudinal and transverse velocity derivatives
crease with the Reynolds number as

K4~ux!}Rl
0.266, K4~uy!}Rl

0.335. ~15!

FIG. 5. Variation of velocity PDF with the Reynolds number.

FIG. 6. Variation of the longitudinal velocity derivative PDF with the Re
nolds number.
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The exponent ofK4(uy) is larger than that ofK4(ux); thus,
the PDF for the transverse velocity derivative has longer t
than those of the longitudinal velocity derivative. From e
perimental observations, Shen and Warhaft reported
K4(ux)}Rl

0.37 andK4(uy)}Rl
0.25.26 Since there is scatter in

the experimetal data, the exponents in Eq.~15! by the present
DNS are not inconsistent with the experimental data. V
Atta and Antonia studied the Reynolds number depende
of S3(ux) andK4(ux),

46 and found that

S3~ux!}Rl
0.12, K4~ux!}Rl

0.32 for m50.2, ~16!

S3~ux!}Rl
0.15, K4~ux!}Rl

0.41 for m50.25, ~17!

wherem is the exponent defined by^e r
2&}r 2m for the locally

averaged energy dissipation rate.4,21 Generally, the Reynolds
number dependency ofS3 and K4 in our DNSs is weaker
than observed in the experiments, irrespective of the typ
forcing used. We believe this is because the range of R
nolds numbers in DNS is smaller than experimental flow
and there remain small-scale anisotropy effects in the exp
ments.

B. Probability density functions

The probability density function conveys informatio
about single-point velocity statistics. It has been one of
central issues of turbulence research in the last dec
Single-point PDFs for the velocity and its derivatives a
shown in Figs. 5–7. A longer time period was necessary
the time average to obtain well-converged PDF for the
locity Q(u). The distributionQ(u) is close to Gaussian, an
its tail extends to very low values of the order of 10210. Such
values have not been reported in the literature. TheQ(u)
curve forRl5381 is skewed negatively, but this is attribute
to the insufficient time-averaging period~four large eddy
turnover times! that was used. The overall trend is thatQ(u)
decays faster than a Gaussian distribution at large am
tudes. This behavior was also observed in one-dimensio
decaying and forced Burgers turbulence.48,49

Jiménez has shown that the PDFQ(u) is slightly sub-
Gaussian as the energy spectrum decays faster thank21.50

FIG. 7. Variation of the transverse velocity derivative PDF with the Re
nolds number.
e or copyright; see http://pof.aip.org/about/rights_and_permissions



l

s
o

o
an
th

ity

ar
il
s
no

f
on

e
e
n
hi
nc

are

de
-

tion

e

es

of
ales
ed
y-

ive
plo

1070 Phys. Fluids, Vol. 14, No. 3, March 2002 Gotoh, Fukayama, and Nakano

Down
This is consistent with the present DNS results. Studies
theQ(u) tail predict thatQ(w)}exp(2cuwu3) when the forc-
ing has a short correlation time.51,52 Here, w5u/^u2&1/2 is
the normalized velocity amplitude andc is a nondimensiona
constant. The asymptotic form ofQ(u) was examined by
plotting ln@2ln(Q(w)# against lnuwu; however, theQ(w) tails
were too short to determine the true asymptotic form.

The PDF for the longitudinal velocity derivative i
slightly skewed, as expected from the finite negative value
the skewness factor. The tail becomes longer as the Reyn
number increases. Figure 7 shows that the PDF of the tr
verse derivative is symmetric and has a longer tail than
longitudinal derivative.

There are many theories for the PDF of the veloc
derivative. The asymptotic tail ofQ(]u/]y) is presented in
Fig. 8, in which both the positive and negative sides
plotted by assuming that the PDF is symmetric. The ta
gradually become longer as the Reynolds number increa
therefore,Q(s) is Reynolds-number dependent, and can
be represented in a single stretched exponential form
Q(s)}exp(2busuh), wheres is the normalized amplitude o
]u/]y andb is a nondimensional constant that is a functi
of the Reynolds number.53

V. ISOTROPY

The hypothesis of isotropy of the flow field is one of th
key components of K41. There are various methods to
amine the degree of isotropy. One measure of isotropy ca
obtained from the relations between the second and t
order longitudinal and transverse velocity structure fu
tions. These are

DLL[^~dur !
2&, DTT[^~dv r !

2&, ~18!

DLLL[^~dur !
3&, DLTT[^dur~dv r !

2&, ~19!

where

dur[~u~x1r !2u~x!!•r /r , ~20!

dv r[~u~x1r !2u~x!!•~ I2rr /r 2!•e' , ~21!

FIG. 8. Variation of the asymptotic tail of the transverse velocity derivat
PDF with the Reynolds number. Both positive and negative sides are
ted. The rightmost curve corresponds toRl5460.
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ande' is the unit vector perpendiculer tor , andI is the unit
tensor. Then the isotropy and incompressibility relations

DTT~r !5DLL~r !1
r

2

dDLL~r !

dr
, ~22!

DLTT~r !5
1

6

d

dr
rD LLL~r !. ~23!

In DNS, the solenoidal property of the Fourier amplitu
velocity vectoru~k! is always satisfied to the level of nu
merical error, which is smaller than 10215. Thus, the accu-
racy of the above relations depends solely on the devia
from isotropy. The two sides of Eqs.~22! and~23! are com-
pared forRl5125, 381, and 460 in Figs. 9 and 10. Th
curves in the figures are divided byr 2/3 and r, respectively,
and the vertical axes of the plots are linear. The thick lin
represent the left hand sides of Eqs.~22! and ~23!, and the
thin lines correspond to the right-hand sides. The isotropy
the second and third order moments is excellent for sc
less thanL/2. The difference at larger separations is caus
by the anisotropy due to the small number of energ
containing Fourier modes. The curves forRl5381 and 460

t-
FIG. 9. Isotropy relation at the second order. Thin line:DTT(r )r 22/3, thick
line: (DLL(r )1(r /2)(dDLL(r )/dr))r 22/3. L/h and l/h are shown forRl

5460.

FIG. 10. Isotropy relation at the third order. Thin line:DLTT(r )r 21, thick
line: ((1/6)(d/dr)rD LLL(r ))r 21. L/h andl/h are shown forRl5460.
e or copyright; see http://pof.aip.org/about/rights_and_permissions



rd

re

th

s

of

of
g-
, the
NS
lly.

er-
n

y

e
les
se
n
the

r

1071Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity field statistics in homogeneous

Down
in Fig. 9 are not horizontal, suggesting that the second o
structure function does not scale asr 2/3. The scaling expo-
nents will be examined later in this paper. The isotropic
lations, such asD11225D1133 and D222253D22335D3333,
and Hill’s higher order relations were not computed.54

VI. KÁRMÁN–HOWARTH–KOLMOGOROV EQUATION

The energy budget for various scales is described by
Kármán–Howarth–Kolmogorov~KHK ! equation,

4

5
ēr 52DLLL16n

]DLL

]r
1Z ~24!

for steady turbulence,4,55,56whereZ(r ) denotes contributions
due to the external force given by

Z~r ,t !5E
2`

t

^df~r ,t !•df~r ,s!&ds

512r E
0

`S 1

15
1

sinkr

~kr !3 13
coskr

~kr !4 23
sinkr

~kr !5 DF~k!dk.

~25!

Since the external force spectrumF(k) is localized in a
range of low wave numbers, the asymptotic form ofZ(r ) for
small separations is given as

Z~r !5
2

35
ē inkf

2r 3, kf
2[

*0
`k2F~k!dk

*0
`F~k!dk

. ~26!

A generalized Ka´rmán–Howarth–Kolmogorov equation ha
also been derived:57–63

4

3
ēr 52~DLLL12DLTT!12n

]

]r
~DLL12DTT!1W,

~27!

where

W~r !54r E
0

`S 1

3
1

coskr

~kr !2 2
sinkr

~kr !3 DF~k!dk,

'
2

15
ē inr 3kf

2 for ukfr u!1. ~28!

FIG. 11. Terms in the Ka´rmán–Howarth–Kolmogorov equation whenRl

5460. Thin solid line: 4/5.
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Equation~24! is recovered by substituting Eqs.~22! and~23!
into Eq. ~27!.

Figure 11 shows the results obtained when each term
Eq. ~24! is divided byēr for Rl5460. Curves in whichr /h
is larger thanr /h51200 are not shown, because the sign
DLLL changes. A thin horizontal line indicates the Kolmo
orov value 4/5. When the separation distance decreases
effect of the large scale forcing used in the present D
decreases quickly, while the viscous term grows gradua
The third order longitudinal structure functionDLLL quickly
rises to the Kolmogorov value, remains there over the in
tial range~betweenr /h'50 and 300!, and then decreases. I
the inertial range, the force term decreases asr 3 according to
Eq. ~26!, while the viscous term increases asr z221(z2,1)
whenr decreases.@Since each term in the figure is divided b
( ēr ), the slope of each curve is 2 andz222, respectively.#
The sum of the three terms in the right hand side of Eq.~24!
divided by ēr is close to 4/5, the Kolmogorov value. Th
deviation of the sum from the 4/5 law at the smallest sca
is due to the slightly lower resolution of the data at the
scales~kmaxh is close to one!. At larger scales greater tha
r /h5700, the deviation is caused by the finiteness of

FIG. 12. Kolmogorov’s 4/5 law.L/h andl/h are shown forRl5460. The
maximum values of the curves are 0.665, 0.771, 0.781, and 0.757 foRl

5125, 284, 381, and 460, respectively.

FIG. 13. Terms in the generalized Ka´rmán–Howarth–Kolmogorov equation
for Rl5460. Thin solid line: 4/3.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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ensemble, which indicates the persistent anisotropy of
larger scales. The above findings are consistent with the
rent knowledge of turbulence developed since Kolmogor
although confirmation of some aspects of turbulence us
actual data is new from both a numerical and experime
point of view.56,59–65

It is interesting and important to observe when the K
mogorov 4/5 law is satisfied as the Reynolds num
increases.6,66–69Figure 12 shows curves of2DLLL(r )/( ēr )
for various Reynolds numbers. In this figure, the 4/5 l
applies when the curves are horizontal. The portion of
curves in whichr /h.1200 is not shown. Although there is
small but finite horizontal range whenRl.284, the level of
the plateau is still less than the Kolmogorov value. T
maximum values of the curves are 0.665, 0.771, 0.781,
0.757 for Rl5125, 284, 381, and 460, respectively. T
value 0.781 for Rl5381 is 2.5% less than 0.8. A
asymptotic state is approached slowly, which is consis
with recent studies. However, the asymptote is approac
faster than predicted by the theoretical estimate.66,69 The

FIG. 14. Kolmogorov’s 4/3 law.L/h andl/h are shown forRl5460. The
maximum values of the curves for the 4/3 law are 0.564, 1.313, 1.297,
1.259 forRl5125, 284, 381, and 460, respectively.

FIG. 15. Variation of thedur PDF with r for Rl5381. From the outermos
curve, r n /h52n21dx/h52.3832n21, n51,...,10, wheredx52p/1024.
The inertial range corresponds ton56, 7, 8. Dotted line: Gaussian.
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slow approach is due to the fact thatDLLL(r ) is the third
order structure function and most positive contributions
canceled by negative ones. Thus only the slight asymm
of thedur PDF contributes toDLLL . The level of the plateau
of theRl5460 curve is slightly less than the others. A high
value would be expected if the time average period used
the Rl5460 run were longer.

The generalized Ka´rmán–Howarth–Kolmogorov equa
tion Eq.~27! is also examined in a similar fashion. Figure 1
shows each term of the equation divided byēr ; a horizontal
line indicates the 4/3 law. The agreement between the pre
data and theory is satisfactory. The third order mom
slowly approaches the Kolmogorov value 4/3, as shown
Fig. 14. The maximum values of the curves of the 4/3 l
are 0.564, 1.313, 1.297, and 1.259 forRl5125, 284, 381,
and 460, respectively.

VII. STRUCTURE FUNCTIONS AND SCALING
EXPONENTS

The velocity structure functions are defined as

Sp
L~r !5^udur up&, Sp

T~r !5^udv r up&,

nd
FIG. 16. Variation of PDF fordv r with r at Rl5381. The classification of
curves is the same as in Fig. 17.

FIG. 17. Convergence of the tenth order accumulated momentsC10(dur) at
Rl5381 for various separationsr n /h52.3832n21, n51,...,10. Curves are
for n51,...10 from the uppermost, and the inertial range correspondsn
56, 7, 8.
e or copyright; see http://pof.aip.org/about/rights_and_permissions



u

e

ge
e
as
e

d
v

r-
-

ith
, the

be-
e-
e to
po-
the
the
he
hat
ces

is
ex-
if-

in

e

1073Phys. Fluids, Vol. 14, No. 3, March 2002 Velocity field statistics in homogeneous

Down
Sp,q
M ~r !5^udur upudv r uq&. ~29!

When the separation is in the inertial range, the struct
functions obey the scaling law

Sp
L~r !}r zp

L
, Sp

T~r !}r zp
T
, Sp,q

M ~r !}r zp,q
M

. ~30!

Taking the absolute values of the velocity difference giv
well-converged statistics.

The higher the order of the structure functions, the lar
the contributions of the PDF tails, so the statistical conv
gence of higher order structure functions is poor. To incre
the statistical ensemble, the velocity structure functions w
computed as follows. For a separation vectorrei ,
udur(x,s)up is spatially averaged, then averaged for three
rections of the separation vector, and finally averaged o
time:

^udur up&5
1

3NTeddy
av E

t

t1Teddy
av S (

i 51

3

(
x

uu~x1rei ,s!

2u~x,s!upD ds, ~31!

FIG. 18. Convergence of the tenth order accumulated momentsC10(dv r)
whenRl5381 for various separationsr n /h. The curves are the same as
Fig. 17.

FIG. 19. Plot of^dur
2&r 20.701 againstr /h for Rl570, 125, 284, 381, and

460.
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whereei is the unit vector in the direction of thexi axis.
PDFs of the longitudinal and transverse velocity diffe

ences whenRl5381 are shown in Figs. 15 and 16 to exam
ine the global change of the velocity difference statistics w
respect to scale. As the separation distance decreases
PDF deviates from a Gaussian distribution and its tail
comes longer. The PDF for the longitudinal velocity incr
ment is skewed negatively, reflecting the energy cascad
smaller scales. However, the PDF for the transverse com
nents is almost symmetric and has a longer tail than
longitudinal PDF. The same trends were observed in
PDFs forRl5460. Therefore, using the absolute value of t
transverse velocity difference is justified in the sense t
both positive and negative transverse velocity differen
have the same statistics.

The highest order of the structure function for which it
feasible to obtain converged statistics is determined by
amining the convergence of the moments of the velocity d
ferences,

Cp~z!5E
0

z

uz8upQ~z8!dz8, ~32!

FIG. 20. Plot of^dur
2&r 20.709 againstr /h for Rl570, 125, 284, 381, and

460.

FIG. 21. Variation of the local scaling exponentz2
L(r ) with the Reynolds

number.l/h andL/h for Rl5460 are marked by arrows. A horizontal lin
shows 0.696.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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wherez is a normalizeddur or dv r , and Q(z) is its PDF.
Figures 17 and 18 representC10(dur) andC10(dv r), respec-
tively. The separation distances arer n /h52n21 dx/h
52.3832n21, n51,...,10, wheredx52p/1024, and the in-
ertial range corresponds ton56, 7, 8. The tenth order struc
ture functions converge well.

Consider first the second order structure functions.85 As
seen in Fig. 9, the curves ofDLL(r )r 22/3 and DTT(r )r 22/3

are not horizontal. The curves ofDLL(r ) multiplied by
r 20.701andDTT(r ) multiplied byr 20.709are given in Figs. 19
and 20. In these plots, the exponents are determined us
least square fit. The curves are almost horizontal whenRl

5284, 381, and 460. The exponent 0.701 is larger than
Kolmogorov value 2/3, but close to the value 0.696 repor
by She and Le´vêque.70 The difference 0.70122/3'0.034 is
small; it is difficult to observe this deviation in the energ
spectrum, because the curves are not smooth in wavenu
space~see Fig. 1!. One reason that the small intermitten
correction to the exponent can be found is that the averag
the structure functions is calculated over all the grid points
three directions, yielding an average over a large ensem

FIG. 22. Variation of the local scaling exponentz3
L(r ) with the Reynolds

number.l/h andL/h for Rl5460 are marked by arrows. A horizontal lin
shows 1.0.

FIG. 23. Variation of the local scaling exponentz4
L(r ) with the Reynolds

number. Values ofl/h and L/h for Rl5460 are marked by arrows. A
horizontal line shows 1.28.
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~but redundant to some extent!. However, only a limited
number of Fourier modes are available in the inertial ran
of the energy spectrum, leading to relatively large fluctu
tions.

The width of the scaling range of the structure functio
increases with the Reynolds number. Figures 21–24 illust
how the longitudinal local scaling exponentzp

L

5d logSp
L(r)/d log r, which is a function ofr /h, changes

with the Reynolds number. As the Reynolds number
creases, a horizontal segment appears in the curve. This
ment becomes longer and remains at a constant level, i
cating convergence of the scaling exponents with respec
Rl . ~Plots of the eighth to tenth orders are not shown to s
space.! A horizontal line inserted in each figure indicates t
value reported by She and Le´vêque.70 When Rl5460, the
range of the constant scaling exponents starts atr /h'100
~about 2l/h! and ends atr /h'300 ~aboutL/2h!. The same
behavior is also observed for the transverse scaling ex
nents betweenr /h'50'l/h and 300.

Figures 25–27 show the structure functions ofSp
L(r ),

Sp
T(r ) andSp,q

M (r ) at Rl5460. The curves obtained when th
separation is greater than 1200r /h are not shown. For the

FIG. 24. Variation of the local scaling exponentz6
L(r ) with the Reynolds

number.l/h andL/h for Rl5460 are marked by arrows. A horizontal lin
shows 1.78.

FIG. 25. Plot of ^udur up& againstr /h for various orders.Rl5460. The
curves representp51, 2,...,10 from the lowermost atr /h5L/h.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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structure functions at smallr, the slope of the curve is ap
proximately p. The curves are straight for separations b
tweenl/h andL/h. The straight portion ofSp

T(r ) is slightly
longer than that ofSp

L(r ), and extends to smaller separation
This can be seen more clearly in plots of the local scal
exponents~see below!. The values ofSp

T(r ) are larger than
those ofSp

L(r ). The mixed structure functions for a give
orderp1q52n have different slopes: for example, the slo
of S6,2

M (r ) is larger than that ofS4,4
M (r ).

The scaling exponents of the structure functions wh
Rl5460 are plotted against the separation distance in F
28–30. Shelves are observed in the curves. These are
ments in which the scaling exponents are constant, whic
the scaling range of the structure functions. The shelves
come narrower as the order increases. Careful examina
reveals that:

~1! The scaling range ofSp
L(r ) is between 2l/h andL/(2h),

while that ofSp
T(r ) is betweenl/h andL/(2h).

~2! Therefore, the scaling range ofSp
T(r ) is longer than that

of Sp
L(r ).

FIG. 26. Plot of ^udv r up& againstr /h for various orders.Rl5460. The
curves representp51, 2,...,10 from the lowermost atr /h5L/h.

FIG. 27. Plot of^udur upudv r uq& againstr /h for various orders.Rl5460. A
set of numbers denotes (p,q).
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~3! When the orderp increases, both the high and low en
of the zp

L shelves move inward, and the scaling range
centered onr /h5200.

~4! When the orderp increases, the high ends of the shelv
for zp

T move fromL/(2h) to a smaller separation, but th
low ends stay atl/h.

~5! The curves ofzp
T at higher orders are noisier than tho

of zp
L .

~6! The average distance ofzp11
T 2zp

T within the scaling
range becomes less with the orderp faster than that of
zp11

L 2zp
L .

Facts~1! to ~4! indicate that when the Reynolds number
finite, the width and position of the scaling range ofSp

T(r )
differ from those ofSp

L(r ). The crossover length at which th
scaling behavior of the structure functions ceases due to
effect of the viscosity is also different. As the separati
increases from the Kolmogorov scale, the crossover len
l c(p) is defined as the length whenh dzp(r )/dr exceeds a
certain small negative value, say20.001, for the first time.

FIG. 29. Variation of the local scaling exponentszp
T(r ) with r /h for various

orders.Rl5460. The curves representp51, 2,...,10~from the lowermost! in
the scaling range. Horizontal lines show the values obtained by She
Lévêque, 0.696, 1.0, 1.28, and 1.78.

FIG. 28. Variation of the local scaling exponentszp
L(r ) with r /h for various

orders.Rl5460. The curves representp51, 2,...,10~from the lowermost! in
the scaling range. Horizontal lines show the values obtained by She
Lévêque, 0.696, 1.0, 1.28, and 1.78.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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Figure 31 shows the variation ofl c(p)/h for the longitudinal
and transverse structure functions. The figure clearly in
cates that the crossover length ofSp

L(r ) increases with the
order and approaches 2l, while that of Sp

T(r ) is l and ap-
proximately independent of the order. The above observa
implies that the Taylor microscale is the key length scale
the low end of the scaling range,71 and is related to the struc
ture of the velocity field. The relatively narrowzp,q

M shelves
resemble those ofzp

L rather thanzp
T . For an order of up to

eight,

z2n
T ,z2~n21!,2

M ,¯,z2,2~n21!
M ,z2n

L ~33!

within the scaling ranges ofRl5381 and 460. However, th
inequalities are weak.

The scaling exponents measured in the scaling ra
whenRl5381 and 460, and the values reported by She
Lévêque, are listed in Table III70 and plotted in Fig. 32. The
DNS values agree with the curves by She and Le´vêque up to
the sixth order but are slightly smaller at higher order. T
curve by the mean field theory by Yakhot is close to t
values ofzp

L by presnet DNS.72 Arimitsu and Arimitsu de-
rived analytically the scaling exponents by using the sta
tics based on the Havrda–Charvat–Tsallis entropy~general-
ized entropy!.73,74 The theory contains one parameter, t

FIG. 30. Variation of the local scaling exponentszp,q
M (r ) with r /h for vari-

ous orders.Rl5460. The curves represent (p,q)5(2,2), ~4,2!, ~2,4!, ~6,2!,
~4,4!, ~2,6!, ~8,2!, ~6,4!, ~4,6!, ~2,8! ~from the lowermost! with r /h5200.
Horizontal lines show the values 1.28 and 1.78.
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intermittency exponentm. The results withm50.25 are very
close to the present DNS results. The present DNS value
p>4 are slightly larger than the experimental values cal
lated by Dhruvaet al.25 However, the difference is within the
error bars, and is probably due to the differing Reyno
numbers of the flow.~The experiments were performed
Reynolds numbers between 10 000 and 15 000.!

There have been many arguments about the approp
scaling exponents for the longitudinal and transve
exponents.25–27,32–37,39,40,71,75Since there are considerab
fluctuations, especially inzp

T @see Figs. 28 and 29, and fa
~5! above#, determination of the scaling exponents at ord
larger than six is difficult. These values will have large err
bars. The large fluctuations inzp

T indicate that the higher the
order of the structure functions, the more the moments
dominated by rare events. Thus, the sample size is sma
the statistics are less isotropic, and the statistical con
gence becomes poorer.

For lower order momentsp<3, the scaling exponent
should be equal even when the order is not an integer, s
the longitudinal and transverse structure functions are rela
to each other through Eqs.~22! and ~23!.

The fourth order moments are related to the second o

FIG. 31. Variation of the crossover length with the order of the struct
functions. Solid line with cross:l c

L/h(Rl5460), solid line with circle:
l c
T/h(Rl5460), dashed line with star:l c

L/h(Rl5381), dashed line with
filled circle: l c

T/h(Rl5381). A horizontal line indicatesl/h when Rl

5460.
TABLE III. Scaling exponents.zp
SL5p/912(12(2/3)p/3) is reported by She and Le´vêque ~Ref. 70!. The exponents are determined over the range ofr /h:

@100,250#, @60,200#, @100,200# for zp
L , zp

T , andz (p,q)
M whenRl5381, and@100,300#, @60,200#, @100,200# whenRl5460, respectively.

p

zp
L zp

T

zp
SL (p,q)

zp,q
M

Rl5381 Rl5460 Rl5381 Rl5460 Rl5381 Rl5460

1 0.37060.004 0.36660.007 0.36960.004 0.37360.013 0.364 ~2,2! 1.2960.01 1.2860.01
2 0.70960.009 0.70160.014 0.70160.01 0.70960.013 0.696 ~4,2! 1.7860.02 1.7460.02
3 1.02 60.02 1.0160.02 0.99860.02 1.0160.01 1.00 ~2,4! 1.7460.03 1.7060.02
4 1.30 60.02 1.2960.03 1.2660.03 1.2760.02 1.28 ~6,2! 2.1860.04 2.1260.02
5 1.56 60.03 1.5460.03 1.4960.04 1.4960.003 1.54 ~4,4! 2.1460.04 2.0560.02
6 1.79 60.04 1.7760.04 1.6960.05 1.6760.04 1.78 ~2,6! 2.0860.04 1.9860.02
7 1.99 60.04 1.9860.06 1.8660.05 1.8160.06 2.00 ~8,2! 2.4960.05 2.4360.03
8 2.18 60.04 2.1760.07 2.0060.04 1.9360.09 2.21 ~6,4! 2.4660.06 2.3360.03
9 2.35 60.04 2.3560.08 2.11 60.05 2.0260.13 2.41 ~4,6! 2.4160.04 2.2360.04

10 2.49 60.04 2.5360.09 2.2060.06 2.0860.18 2.59 ~2,8! 2.3260.05 2.1460.03
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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pressure structure function̂(d rp)2&5^(p(x1r )2p(x))2&
through the Poisson kernel.43,71,75,76This relation may serve
as a constraint among the three structure functions at
fourth order, but it is not restrictive in the sense that there
no direct relation betweenS4

L , S4
T , andS2,2

M .54,72,77,78Nelkin
argued that the pressure spectrum can be expressed in
of the dissipation spectrumEe(k)54pk2F @^exex1r&#, the
enstrophy spectrumEV(k)54pk2F @^VxVx1r&#, and the
spectrum of the product of the enstrophy and dissipa
EM(k)54pk2F @^exVx1r&#. He suggested that the three e
ponents are equal in the limit of high Reynold
numbers.71,76,87 However, the exponents in the spectra@for
example,me in Ee(k)5Ceē2k21(kL)2me

# are not necessar
ily equal to those ofS4

L(r ), S4
T(r ), or S2,2

M (r ). The former are
the spectra of the dissipation range quantities, while the la
are the fourth order correlations of inertial range quantiti

The DNS values of the scaling exponents arez4
T51.27,

z2,2
M 51.28, andz4

L51.29 forRl5460 which are obtained by
averaging over the scaling range. The difference betw
these values is within 3%. Figures 33 and 34 show the va

FIG. 32. Variation of the scaling exponentszp
L andzp

T whenRl5460. Sym-
bols are the results of the present DNS, star:zp

L , circle: zp
T . SL, MF, AA,

and K62 are the curves by She and Le´vêque model~Ref. 70!, Yakhot’s mean
field theory ~Ref. 72!, Arimitsu and Arimitsu’s generalized entropy theor
with m50.25, and K62 withm50.25, respectively.

FIG. 33. Comparison of the fourth orderz2,2
M . Rl5381. A horizontal line

indicates 1.28.
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tion of the fourth order scaling exponents with separat
distance for two Reynolds numbers. At the high end of thr
range, the difference between the exponents is less. Altho
it is again difficult to draw definite conclusions from th
figures, it seems that the differences between the three s
ing exponents decrease with the Reynolds number.71

For higher order momentsp.4, there are no simple
equations to directly relate the longitudinal and transve
structure functions. A dynamical equation relates differe
types of structure functions at various orders.54,72,77,78L’vov
et al. have pointed from the view point of the irreducib
representation of the rotation symmetry group that the lon
tudinal and transverse structure functions must have
same asymptotic scaling exponents for infinite Reyno
number, but different exponents can be observed when
scaling range is not long enough.39 He et al. discussed that
the scaling exponents for locally averaged enstrophy and
sipation are equal for infinite Reynolds number, but may
different for finite Reynolds number.40 From this argument,
they suggested that the scaling exponents for the longitud
and transverse structure functions are also equal at infi
Reynolds numbers. Zhou and Antonia suggested that the
ferenceDzp5zp

L2zp
T vanishes at sufficiently large Reynold

numbers.37 However, the present data indicate that the diff
enceDzp for Rl5381 and 460 is larger than the valueDzp

extrapolated from the experimental data. The exponent
Table III and Fig. 32 are average values over the entire s
ing range and indicatezp

T,zp
L for p.4. The overall trend of

the local scaling exponents within the scaling range sugg
that the rate of the increase ofzp

T with respect to the order is
slower than that ofzp

L @fact ~6!#. Although the asymptotic
state is beyond the scope of the present DNS study, the a
observations and facts suggest thatzp

T is smaller thanzp
L

when p.4. If some portion of this difference at higher o
ders arises from the insufficient degree of isotropy, a lon
time average would provide insights into this problem.
other portion of the difference comes from the insufficie
length of the scaling range, it is necessary to extend far
the scaling range even when we use the invariant scalar f

FIG. 34. Comparison of the fourth order scaling exponentsz4
L , z4

T , and
z2,2

M . Rl5460. A horizontal line indicates 1.28.
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tions associated with the higher order velocity tensors, wh
requires far more computational resources.

VIII. CROSSOVER LENGTH

The scaling behavior of the velocity structure functi
for a turbulent flow has been examined in detail inspir
with the success of statistical physics of phase transitio
The density structure function was introduced there to st
the structure of matter using photon, neutron, and elec
scattering. The interaction potential between the molecu
the crystal and fractal structure of the matter were obtai
from the techniques. Therefore, scaling exponents and o
physical quantities should be extracted from the veloc
structure functions to provide more information about t
turbulent flow. In this section, the physical meaning of t
crossover length is considered on the basis of the structu
the flow field.

It is useful to review the scaling exponents of veloc
structure functions for the one-dimensional Burgers tur
lence. The scaling exponent of the one-dimensional Burg
turbulence is79,80

zp5H 1 for p>1,

p for p,1.
~34!

The nonlinearity balances the viscous term and produ
shock waves. Thus, the velocity field resembles a sawto
wave, with random magnitudes and intervals of shoc
Whenp,1, the contribution to the structure function occu
in the ramp of the sawtooth wave, in which the velocity fie
is smooth and linear inr; thereforezp5p. The shocks domi-
nate the structure function whenp>1. In this case, the shoc
is so sharp that it has a definite length scalel s5Du/n, where
Du is the velocity jump across the shock. Since the proba
ity of finding a shock within a distancer is proportional tor,
and the amplitude of the moment is given by the veloc
jump across the shock front,^dur

p&5*dupQ(du,r )d(du), it
follows thatzp51 and the crossover occurs at the length
the shock width, i.e.,l c'^ l s&'urms/n, which is independen
of the order. Structure functions have been calculated pr
ously up to the twentieth order from a DNS of decayi
Burgers turbulence~Fig. 5 in Ref. 80!. The scaling was de
scribed by Eq.~34!, and the crossover length was indepe
dent of the order. The most important point of this analysis
that the singularity is very sharp and has a definite shape
length.

Now consider the transverse structure function
Navier–Stokes turbulence. The crossover length ofSp

T(r ) is
independent of the order, which strongly suggests that th
exists a structure with a definite length~approximatelyl! in
the velocity field. Such structures could be a shear laye
thicknessl or a vortex tube of radiusl. When the separation
vectorr encompasses such objects andr is greater thanl, the
Sp

T(r ) when p>1 begins to attain the scaling behavior. T
scaling exponentzp

T is determined by the velocity amplitude
at the end points of the separation vector and the popula
of such structures that are governed by the flow dynamic

The behavior of the longitudinal structure function
slightly different. For a given separationr, most of the con-
loaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP licens
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tributions toSp
L(r ) come from the regions of flow containin

large negative gradients of]u/]x whenp.1.64 The portion
of the fluid in which dur.0 is stretched, and portion in
which dur,0 is compressed in the direction of the sepa
tion vector. This is accompanied by squeezing or stretch
of ambient fluid on a plane normal to the separation vec
due to pressure action and the incompressibility of the flo
Thus the velocity field is less singular than in the case
Burgers turbulence. The resulting field has a ramp struct
but no shocks occur. For the ramp structure, a linear dim
sion of a large negative gradient domain]u/]x, say l * ,
would be determined by the balance between the convec
and the pressure gradient. This differs from Burgers tur
lence, in which the shock width is determined byDu/n.
Since the pressure gradient is a function of velocity, the
pendence ofl * on velocity indicates that the converse al
applies:dur(,0) depends onl * . A large orderp samples
large dur(,0) and large pressure gradients; therefore,
balance between these quantities results in anl * that in-
creases slowly withp and saturates at certain distance~about
2l!. This explains the gradual increase of the crosso
length with the order. Although the above scenario require
mathematical analysis,81,82 it seems plausible that the esse
tial difference between the longitudinal and transverse ve
ity difference is that the incompressibility condition direct
constrains the former, whereas the constraint is only seco
ary for the latter.

These findings suggest that the Taylor microscalel is a
characteristic length that indicates the low end of the sca
range in real space. This length scale contains more of
physics of the Navier–Stokes dynamics than the Kolm
orov length in the scaling range.

A Burgers vortex consists of a strong vortex core s
rounded by a dissipation field. A similar structure is observ
in homogeneous isotropic turbulence data from a DNS wit
diameter of approximately 10h.83 However,l'50h is five
times the diameter of the structure, and 2l is even longer.86

This suggests thatthe objects that attain the scaling law ar
those far outside the strong vortex cores and/or shear lay.
This contrasts with the view that turbulence consists of ma
thin vortex tubes or filaments, as frequently observed in D
visualizations of regions with high vorticity. Objects in th
scaling range are less definitive and have more exten
structures. If the strong vortex tubes are the sinews of tur
lence, the fluid objects in the inertial range would be t
muscles of turbulence. They stretch and/or compress the
ews ~strong vortices!.

IX. SUMMARY AND DISCUSSION

The velocity field statistics of incompressible steady t
bulent flow have been studied using a high-resolution D
with up to N510243 grid points. The range of the Taylo
microscale Reynolds number was between 38 and 460. G
erally, the results are consistent with previous findings,
the quantitative data are more precise and accurate. This
vides new insights into turbulence.

The energy spectra agree well with experimental da
and the inertial range spectrum is clearly observed for
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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first time. The Kolmogorov constant is 1.64, consistent w
experimental values. The values of the moments of velo
and velocity derivatives and their PDFs are consistent w
other DNS and experimental values, but theirRl dependence
is generally weaker than observed in experiments. The
of PDFs were compared to theoretical predictions, but
definite conclusions were obtained.

The isotropy of the second and third order structu
functions is well satisfied for scales of motion below half
the integral scale, which is the upper limit of the inert
range in the present DNS. The energy budgets were ex
ined in terms of the ~generalized! Kármán–Howarth–
Kolmogorov equation. The energy balance is also satis
for every scale below the integral scale provided that
time average is sufficient. The Kolmogorov 4/5 and 4/3 la
are almost achieved, but convergence with Reynolds num
is slow.

The Reynolds numbers of the flow in the present D
are lower than those of experiments. However, the degre
isotropy in the present data is very satisfactory compare
the experiments, which requires the Reynolds number to
high enough to obtain local isotropy at small scales. T
isotropy of the velocity field in the present DNS is very clo
to the textbook description, although it is not perfect.25,32

There are many reports in the literature stating that
inertial range, or more generally the scaling range, begin
a3h where a is between 10 and 20. This estimate see
reasonable from the point of view of the structure functi
alone. However, when the local scaling exponents are ex
ined, the true scaling range fordur starts at 100h, or about
2l, which is longer than the estimated length. The pres
DNS data show that the strength of the inequality over
inertial range, usually defined ash!r !L, indicates that 100
times h is at the low end. This agrees with the textbo
theory. On the other hand, the upper end of the scaling ra
is L/b, whereb is of order of unity, provided that the forcin
is applied in the low wavenumber range and that the sam
size is large enough to satisfy isotropy. Therefore, as fa
the qualitative features of the lower order statistics such
the local homogeneity, isotropy, and energy budgets are
cerned, the K41 theory of turbulence is correct provided t
the large scale forcing is well controlled. However, the
certainly exist deviations in the statistics from the K41 p
dictions for every order except that of the 4/5 law, ev
under idealized conditions at large scales.

The convergence of the scaling exponents of the st
ture functions with the Reynolds number is examined a
found to be satisfactory up to the tenth order for both
longitudinal and transverse velocity differences. The sca
exponents are directly measured as functions of separa
The exponentsz2

L50.70160.014 andz2
T50.70960.013 are

very close to each other and larger than the Kolmogo
value, 2/3. Equation~22! indicates that the two exponen
must be equal. The small difference~1%! is due to the finite
sample size and small amount of flow anisotropy. Sin
small differences remain in the scaling exponents, even a
second order, determining the precise values of the ex
nents is very difficult. The higher order scaling exponents
definitely anomalous and increase slower than predicted
loaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP licens
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the K41 scaling theory. Thezp
T exponent is smaller thanzp

L

whenp.4, but no definite conclusions can be made, sinc
larger ensemble and longer scaling range are required.

Careful examination shows that the scaling ranges of
longitudinal and transverse structure functions are differe
The crossover length ofSp

L(r ) is longer than that ofSp
T(r ),

increases with the order, and then approaches 2l. The cross-
over length ofSp

T(r ) is l and approximately independent o
the order. This difference is due to the structure of the tur
lence field characterized by the Taylor microscale, and s
gests that the objects that obey the scaling law are those
are longer than 2l.

The present method of determining the scaling ex
nents is more straightforward than ESS. Although the wi
of scaling range obtained using the present method is no
long as that of ESS, the results indicate that the crosso
length changes with the order and behaves differently for
longitudinal and transverse structure functions. This co
not be determined with ESS. The difference in the position
the scaling ranges ofSp

L(r ) andSp
T(r ) raises a question abou

the relevance of ESS, especially when used to find the s
ing exponents ofSp

T(r ) in terms ofS3
L(r ). This point requires

more careful examination.
DNS of turbulence has now reached the point where

inertial range statistics can be obtained directly. This p
vides a powerful tool and valuable data for turbulence
search. There are many aspects not addressed here: fo
ample, the behavior of velocity difference PDFs, t
relations amongst various structure functions, the conditio
averages of terms in the Navier–Stokes equations, the p
sure statistics, etc. These are the goals of future high res
tion DNS research of turbulent flows.
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